1
|
Liu Y, Wu Y, Zhao Y, Niu J, Wang Q, Bamanu B, Hussain A, Liu Y, Tong Y, Li YY. Multidimensional Insights into Organics Stress on Anammox systems: From a "Molecule-Cell-Ecology" Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20768-20784. [PMID: 39468881 DOI: 10.1021/acs.est.4c02781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is efficient and cost-effective for treating high-strength ammonia wastewater, but the organics in wastewater will affect its stability. To address this challenge, it is crucial to gain a deep understanding of the inhibitory effects and mechanisms of organics stress on anammox bacteria. The review provided a comprehensive classification of organics and evaluated their specific effects on the anammox system according to their respective characteristics. Based on the micro to macro perspective, the "molecule-cell-ecology" inhibitory mechanism of organics on anammox bacteria was proposed. The molecular observation systematically summarized the binding process and action sites of organics with anammox bacteria. At the cellular observation, the mechanisms of organics effects on extracellular polymeric substances, membranes, and anammoxosome of anammox bacteria were also expounded. At the ecological observation, the dynamic changes in coexisting populations and their role in organics transformation were further discussed. Further revelations on response mechanisms and inhibition mitigation strategies were proposed to broaden the applicability of anammox systems for organic wastewater. This review offered a multidimensional understanding of the organics inhibitory mechanism of anammox bacteria and provided a theoretical foundation for anammox systems.
Collapse
Affiliation(s)
- Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Arif Hussain
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
2
|
Li W, Chen X, Yang T, Zhu H, He Z, Zhao R, Chen Y. Sponge iron enriches autotrophic/aerobic denitrifying bacteria to enhance denitrification in sequencing batch reactor. BIORESOURCE TECHNOLOGY 2024; 407:131097. [PMID: 38986882 DOI: 10.1016/j.biortech.2024.131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Sponge iron (SFe) coupled with a sludge system has great potential for improving biological denitrification; however, the underlying mechanism is not yet fully understood. In this study, the denitrification performance and microbial characteristics of ordinary sludge and SFe-sludge systems were investigated. Overall, the SFe-sludge reactor had faster ammonium degradation rate (94.0 %) and less nitrate accumulation (1.5-53.3 times lower) than ordinary reactor during the complete operation cycle of sequencing batch reactors. The addition of SFe increased the activities of nitrate and nitrite reductases. The total relative abundance of autotrophic denitrifying bacteria (Acidovorax, Arenimonas, etc.) in the SFe-sludge system after 38 days of operation was found to be 10.6 % higher than that in the ordinary sludge reactor. The aerobic denitrifying bacteria (Dokdonella, Phaeodactylibacter, etc.) was 5.3 % higher than ordinary sludge. The SFe-sludge system improved denitrification by enriching autotrophic/aerobic denitrifying bacteria in low carbon-to-nitrogen ratio wastewater treatment.
Collapse
Affiliation(s)
- Wenxuan Li
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinjuan Chen
- Department of Architecture and Materials Technology, Xinjiang Industry Technical College, Urumqi 830021, China
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hongjuan Zhu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zihan He
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ruifeng Zhao
- Jiuquan Iron & Steel (Group) Co., Ltd, Jiayuguan 735100, China
| | - Yongfan Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Zhang Y, Deng J, Xiao X, Li YY, Liu J. Insights on pretreatment technologies for partial nitrification/anammox processes: A critical review and future perspectives. BIORESOURCE TECHNOLOGY 2023:129351. [PMID: 37336448 DOI: 10.1016/j.biortech.2023.129351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
For almost 20 years, partial nitrification-anammox (PN/A) has been the subject of intensive study and development. Pretreatment of wastewater for PN/A is crucial because the inhibitory substances in the influent may reduce the performance of PN/A. In this review, the current PN/A pretreatment technologies are comprehensively summarized. The selection of pretreatment technology for PN/A depending on the source of the wastewater and its main characteristics (high-strength wastewater or municipal wastewater, organic matters, suspended solids). Comparison of pretreatment technologies through multiple perspectives including wastewater characteristics, the objectives of the wastewater treatment (treating requirement, energy and resource recovery demand), reactor configuration of PN/A. Based on the discussion, two integrated processes, HRAS + one-stage PN/A and advanced AD + two-stage PN/A, are recommended as the preferred processes for treating municipal wastewater and wastewater with a high-strength ammonium, respectively. This review aims to provide guidance for future research and development of PN/A.
Collapse
Affiliation(s)
- Yixuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiayuan Deng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Xiangmin Xiao
- Cangzhou Water Supply and Drainage Group Company Limited, 15 West Jiuhe Road, Cangzhou, Hebei Province 061001, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
4
|
Cao S, Koch K, Duan H, Wells GF, Ye L, Zhao Y, Du R. In a quest for high-efficiency mainstream partial nitritation-anammox (PN/A) implementation: One-stage or two-stage? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163540. [PMID: 37086997 DOI: 10.1016/j.scitotenv.2023.163540] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Partial nitritation-anammox (PN/A) process is known as an energy-efficient technology for wastewater nitrogen removal, which possesses a great potential to bring wastewater treatment plants close to energy neutrality with reduced carbon footprint. To achieve this goal, various PN/A processes implemented in a single reactor configuration (one-stage system) or two separately dedicated reactors configurations (two-stage system) were explored over the past decades. Nevertheless, large-scale implementation of these PN/A processes for low-strength municipal wastewater treatment has a long way to go owing to the low efficiency and effectiveness in nitrogen removal. In this work, we provided a comprehensive analysis of one-stage and two-stage PN/A processes with a focus on evaluating their engineering application potential towards mainstream implementation. The difficulty for nitrite-oxidizing bacteria (NOB) out-selection was revealed as the critical operational challenge to achieve the desired effluent quality. Additionally, the operational strategies of low oxygen commonly adopted in one-stage systems for NOB suppression and facilitating anammox bacteria growth results in a low nitrogen removal rate (NRR). Introducing denitrification into anammox system was found to be necessary to improve the nitrogen removal efficiency (NRE) by reducing the produced nitrate with in-situ utilizing the organics from wastewater itself. However, this may lead to part of organics oxidized with additional oxygen consumed in one-stage system, further compromising the NRR. By applying a relatively high dissolved oxygen in PN reactor with residual ammonium control, and followed by a granules-based anammox reactor feeding with a small portion of raw municipal wastewater, it appeared that two-stage system could achieve a good effluent quality as well as a high NRR. In contrast to the widely studied one-stage system, this work provided a unique perspective that more effort should be devoted to developing a two-stage PN/A process to evaluate its application potential of high efficiency and economic benefits towards mainstream implementation.
Collapse
Affiliation(s)
- Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China; Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany; College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing, 100124, China
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Haoran Duan
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Liu Ye
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yingfen Zhao
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China; Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany.
| |
Collapse
|
5
|
Zuo F, Yue W, Gui S, Sui Q, Wei Y. Resilience of anammox application from sidestream to mainstream: A combined system coupling denitrification, partial nitritation and partial denitrification with anammox. BIORESOURCE TECHNOLOGY 2023; 374:128783. [PMID: 36828226 DOI: 10.1016/j.biortech.2023.128783] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a potential process to achieve the neutralization of energy and carbon. Due to the low temperature and variation of municipal sewage, the application of mainstream anammox is hard to be implemented. For spreading mainstream anammox in practice, several key issues and bottlenecks including the start-up, stable NO2--N supply, maintenance and dominance of AnAOB with high activity, prevention of NO3--N buildup, reduction of sludge loss, adaption to the seasonal temperature and alleviation of COD impacts on AnAOB are discussed and summarized in this review in order to improve its startup, stable operation and resilience of mainstream anammox. Hence a combined biological nitrogen removal (CBNR) system based on conventional denitrification, shortcut nitrification-denitrification, Partial Nitritation and partial Denitrification combined Anammox (PANDA) process through the management of organic matter and nitrate is proposed correspondingly aiming at adaptation to the variations of seasonal temperature and pollutants in influent.
Collapse
Affiliation(s)
- Fumin Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuanglin Gui
- Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
6
|
Xia Q, Ai Z, Huang W, Yang F, Liu F, Lei Z, Huang W. Recent progress in applications of Feammox technology for nitrogen removal from wastewaters: A review. BIORESOURCE TECHNOLOGY 2022; 362:127868. [PMID: 36049707 DOI: 10.1016/j.biortech.2022.127868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Feammox process is crucial for the global nitrogen cycle and has great potentials for the treatment of low COD/NH4+-N wastewaters. This work provides a systematic and comprehensive overview of the Feammox process. Specifically, underlying mechanisms and functional microbes mediating the Feammox process are summarized in detail. And key influencing factors including pH, temperature, dissolved oxygen, organic carbon, source of Fe(III) as well as various electron shuttles are discussed. Additionally, recent development trends and attempts of the Feammox technology in wastewater treatment applications are reviewed, and perspectives for future development are presented. A thorough review of the recent progress in Feammox process is expected to provide valuable information for further process optimization, which is helpful to achieve a more economical operation and better nitrogen removal performance in future field applications.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Ziyin Ai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|