1
|
Kalateh R, Aysu T, Ojeda M, Sanna A. Novel Hierarchical Disordered Li- and Al-KIL-2 Catalysts for the Pyrolysis of Biomass Model Compounds and Wool Waste: A Comparison with ZSM-5. Molecules 2024; 29:5719. [PMID: 39683878 DOI: 10.3390/molecules29235719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, we investigated the pyrolysis of cellulose, lignin, phenylalanine and textile wool waste using microscale thermogravimetric analysis (TGA) and a gram-scale fixed bed reactor. The pyrolysis was conducted at 500 °C and 1 bar N2, using Al- and Li-doped mesoporous KIL-2 and ZSM-5 catalysts for comparison. Our results show that amorphous Al-KIL-2 catalyst was the most efficient in producing aromatics from cellulose and lignin. This efficiency is attributed to Al-KIL-2 large mesoporosity, wide pore size distribution, and mild acid sites. Additionally, Al-KIL-2 promoted esterification and denitrogenation reactions, indicating its potential application in the pyrolysis of biomass and protein-rich feedstocks. Conversely, the Li-KIL-2 catalyst demonstrated activity primarily in the depolymerisation of cellulose to sugars and promoted ketonisation and alcohol formation. In summary, our findings indicate that Al-KIL-2 is a promising catalyst for efficient aromatic production from biomass.
Collapse
Affiliation(s)
- Roozbeh Kalateh
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH12 7NT, UK
| | - Tevfik Aysu
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH12 7NT, UK
| | - Manuel Ojeda
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH12 7NT, UK
| | - Aimaro Sanna
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH12 7NT, UK
| |
Collapse
|
2
|
Rabapane KJ, Matambo TS. Profiling the dynamic adaptations of CAZyme-Producing microorganisms in the gastrointestinal tract of South African goats. Heliyon 2024; 10:e37508. [PMID: 39290285 PMCID: PMC11407064 DOI: 10.1016/j.heliyon.2024.e37508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
The gastrointestinal tract of goats serves as a habitat for anaerobic microbial populations that work together to break down complex plant material, including lignocellulose. This study explored the microbial diversity and metabolic profiles across different gastrointestinal tract compartments. Significant diversity differences among the compartments were observed (ANOSIM p < 0.006), with the abomasum showing a distinct species composition and a decreased alpha diversity (Mann-Whitney/Kruskal-Wallis test p = 0.00096), possibly due to its acidic environment. Dominant microbial phyla included Proteobacteria, Bacteroidetes, and Firmicutes, with Proteobacteria being the most prevalent in the abomasum (50.06 %). Genera like Proteus and Bacteroides were particularly prominent in the rumen and reticulum, highlighting their significant role in feed degradation and fermentation processes. Over 65 % of genes at Kyoto Encyclopedia of Genes and Genomes level 1 were involved in metabolism with significant xenobiotic biodegradation in the abomasum. The dbCAN2 search identified Glycoside Hydrolases as the most prevalent CAZyme class (79 %), followed by Glycosyltransferases, Polysaccharide Lyases, and Carbohydrate Esterases, with Carbohydrate-Binding Modules and Auxiliary Activities accounting for 1 % of the hits. Higher CAZyme abundance was observed in the reticulum and omasum compartments, possibly due to MAGs diversity. In conclusion, the gastrointestinal tract of South African goats harbors diverse CAZyme classes, with Glycoside Hydrolases predominating. Interestingly, higher CAZyme abundance in specific compartments suggested compartmentalized microbial activity, reflecting adaptation to dietary substrates.
Collapse
Affiliation(s)
- Kgodiso J Rabapane
- Centre of Competence in Environmental Biotechnology, Department of Environmental Science, University of South Africa's College of Agriculture and Environmental Science, Cnr Pioneer and Christian De Wet Roads, Private Bag X6, Florida, 1710, South Africa
- Institute for Catalysis and Energy Solutions, University of South Africa's College of Science, Engineering, and Technology, Cnr Pioneer and Christian De Wet Roads, Private Bag X6, Florida, 1710, South Africa
| | - Tonderayi S Matambo
- Centre of Competence in Environmental Biotechnology, Department of Environmental Science, University of South Africa's College of Agriculture and Environmental Science, Cnr Pioneer and Christian De Wet Roads, Private Bag X6, Florida, 1710, South Africa
| |
Collapse
|
3
|
Blindheim FH, Ruwoldt J. The Effect of Sample Preparation Techniques on Lignin Fourier Transform Infrared Spectroscopy. Polymers (Basel) 2023; 15:2901. [PMID: 37447546 DOI: 10.3390/polym15132901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The characterization and quantification of functional groups in technical lignins are among the chief obstacles of the utilization of this highly abundant biopolymer. Although several techniques were developed for this purpose, there is still a need for quick, cost-efficient, and reliable quantification methods for lignin. In this paper, three sampling techniques for fourier transform infrared (FTIR) spectroscopy were assessed both qualitatively and quantitatively, delineating how these affected the resultant spectra. The attenuated total reflectance (ATR) of neat powders and DMSO-d6 solutions, as well as transmission FTIR using the KBr pelleting method (0.5 wt%), were investigated and compared for eight lignin samples. The ATR of neat lignins provided a quick and easy method, but the signal-to-noise ratios in the afforded spectra were limited. The ATR of the DMSO-d6 solutions was highly concentration dependent, but at a 30 wt%, acceptable signal-to-noise ratios were obtained, allowing for the lignins to be studied in the dissolved state. The KBr pelleting method gave a significant improvement in the smoothness and resolution of the resultant spectra compared to the ATR techniques. Subsequently, the content of phenolic OH groups was calculated from each FTIR mode, and the best correlation was seen between the transmission mode using KBr pellets and the ATR of the neat samples (R2 = 0.9995). Using the titration measurements, the total OH and the phenolic OH group content of the lignin samples were determined as well. These results were then compared to the FTIR results, which revealed an under-estimation of the phenolic OH groups from the non-aqueous potentiometric titration, which was likely due to the differences in the pKa between the lignin and the calibration standard 4-hydroxybenzoic acid. Further, a clear correlation was found between the lower Mn and the increased phenolic OH group content via SEC analyses. The work outlined in this paper give complementary views on the characterization and quantification of technical lignin samples via FTIR.
Collapse
Affiliation(s)
| | - Jost Ruwoldt
- RISE PFI AS, Høgskoleringen 6B, 7491 Trondheim, Norway
| |
Collapse
|
4
|
Bachs-Herrera A, York D, Stephens-Jones T, Mabbett I, Yeo J, Martin-Martinez FJ. Biomass carbon mining to develop nature-inspired materials for a circular economy. iScience 2023; 26:106549. [PMID: 37123246 PMCID: PMC10130920 DOI: 10.1016/j.isci.2023.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
A transition from a linear to a circular economy is the only alternative to reduce current pressures in natural resources. Our society must redefine our material sources, rethink our supply chains, improve our waste management, and redesign materials and products. Valorizing extensively available biomass wastes, as new carbon mines, and developing biobased materials that mimic nature's efficiency and wasteless procedures are the most promising avenues to achieve technical solutions for the global challenges ahead. Advances in materials processing, and characterization, as well as the rise of artificial intelligence, and machine learning, are supporting this transition to a new materials' mining. Location, cultural, and social aspects are also factors to consider. This perspective discusses new alternatives for carbon mining in biomass wastes, the valorization of biomass using available processing techniques, and the implementation of computational modeling, artificial intelligence, and machine learning to accelerate material's development and process engineering.
Collapse
Affiliation(s)
| | - Daniel York
- Department of Chemistry, Swansea University, Swansea SA2 8PP, UK
| | | | - Ian Mabbett
- Department of Chemistry, Swansea University, Swansea SA2 8PP, UK
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
5
|
Sun X, Li Q, Wu H, Zhou Z, Feng S, Deng P, Zou H, Tian D, Lu C. Sustainable Starch/Lignin Nanoparticle Composites Biofilms for Food Packaging Applications. Polymers (Basel) 2023; 15:polym15081959. [PMID: 37112108 PMCID: PMC10141166 DOI: 10.3390/polym15081959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Construction of sustainable composite biofilms from natural biopolymers are greatly promising for advanced packaging applications due to their biodegradable, biocompatible, and renewable properties. In this work, sustainable advanced food packaging films are developed by incorporating lignin nanoparticles (LNPs) as green nanofillers to starch films. This seamless combination of bio-nanofiller with biopolymer matrix is enabled by the uniform size of nanofillers and the strong interfacial hydrogen bonding. As a result, the as-prepared biocomposites exhibit enhanced mechanical properties, thermal stability, and antioxidant activity. Moreover, they also present outstanding ultraviolet (UV) irradiation shielding performance. As a proof of concept in the application of food packaging, we evaluate the effect of composite films on delaying oxidative deterioration of soybean oil. The results indicate our composite film could significantly decrease peroxide value (POV), saponification value (SV), and acid value (AV) to delay oxidation of soybean oil during storage. Overall, this work provides a simple and effective method for the preparation of starch-based films with enhanced antioxidant and barrier properties for advanced food packaging applications.
Collapse
Affiliation(s)
- Xunwen Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Qingye Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Hejun Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zehang Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Shiyi Feng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Pengcheng Deng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Huawei Zou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Dong Tian
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Advanced Polymer Materials Research Center, Sichuan University, Shishi 362700, China
| |
Collapse
|
6
|
Ariyanta HA, Sari FP, Sohail A, Restu WK, Septiyanti M, Aryana N, Fatriasari W, Kumar A. Current roles of lignin for the agroindustry: Applications, challenges, and opportunities. Int J Biol Macromol 2023; 240:124523. [PMID: 37080401 DOI: 10.1016/j.ijbiomac.2023.124523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Lignin has the potential to be used as an additive, coating agent, fertilizer, plant growth stimulator, and packaging material in the agroindustry due to its functional aromatic structure. The quantitative measurement of functional groups is a significant element of the research for lignin structure since they directly impact their optical, dispersion, and chemical properties. These physical and chemical properties of lignin strongly depend on its type and source and its isolation procedure. Thus, lignin provides numerous opportunities for the circular economy in the agroindustry; however, studying and resolving the challenges associated with its separation, purification, and modification is required. This review discusses the most recent findings on lignin use in agroindustry and historical facts about lignin. The properties of lignin and its roles as coating agents, pesticide carriers, plant growth stimulators, and soil-improving agents have been summarized. The emerging challenges in the field of lignin-based agroindustry are considered, and potential future steps to overcome these challenges are discussed.
Collapse
Affiliation(s)
- Harits Atika Ariyanta
- Research center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong 16911, Indonesia; Department of Pharmacy, Universitas Gunadarma, Depok, Indonesia; Research Collaboration Center of Biomass-Based Nano Cosmetic, in Collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia.
| | - Fahriya Puspita Sari
- Research center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong 16911, Indonesia.
| | - Asma Sohail
- Department of Chemistry, Lahore College for Women University, Lahore 54000, Pakistan
| | - Witta Kartika Restu
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Serpong, South Tangerang, Banten 15314, Indonesia; Research Collaboration Center of Biomass-Based Nano Cosmetic, in Collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia.
| | - Melati Septiyanti
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Serpong, South Tangerang, Banten 15314, Indonesia.
| | - Nurhani Aryana
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Serpong, South Tangerang, Banten 15314, Indonesia.
| | - Widya Fatriasari
- Research center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong 16911, Indonesia; Research Collaboration Center of Biomass-Based Nano Cosmetic, in Collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia.
| | - Adarsh Kumar
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, United States.
| |
Collapse
|
7
|
Catalytic Hydropyrolysis of Lignin for the Preparation of Cyclic Hydrocarbon-Based Biofuels. Catalysts 2022. [DOI: 10.3390/catal12121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The demand for biomass utilization is increasing because of the depletion of fossil resources that are non-renewable in nature. Lignin is the second most renewable organic carbon source, but currently it has limited scope for application in the chemical and fuel industries. Lignin is a side product of the paper and pulp, sugar, and 2G bioethanol industries. Many research groups are working on the value-addition of lignin. Among the lignin depolymerization methods, catalytic hydropyrolysis is gaining attention and is playing a crucial role in developing biorefinery. The hydropyrolysis of lignin was conducted at a higher temperature in the presence of H2. The hydropyrolysis of lignin results in the selective formation of non-oxygenated cyclic hydrocarbons in a shorter reaction time. It is possible to use the cyclic hydrocarbons directly as a fuel or they can be blended with conventional gasoline. This review focuses on the prior art of pyrolysis and hydropyrolysis of lignin. Possible products of lignin hydropyrolysis and suitable synthetic routes to obtain non-oxygenated cyclic hydrocarbons are also discussed. The influence of various process parameters, such as type of reactor, metal catalyst, nature of catalytic supports, reaction temperature, and H2 pressure are discussed with regard to the hydropyrolysis of lignin to achieve good selectivity of cyclic hydrocarbons.
Collapse
|
8
|
Vuppaladadiyam AK, Vuppaladadiyam SSV, Awasthi A, Sahoo A, Rehman S, Pant KK, Murugavelh S, Huang Q, Anthony E, Fennel P, Bhattacharya S, Leu SY. Biomass pyrolysis: A review on recent advancements and green hydrogen production. BIORESOURCE TECHNOLOGY 2022; 364:128087. [PMID: 36216287 DOI: 10.1016/j.biortech.2022.128087] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Biomass pyrolysis has recently gained increasing attention as a thermochemical conversion process for obtaining value-added products, thanks to the development of cutting-edge, innovative and cost-effective pyrolysis processes. Over time, new and novel pyrolysis techniques have emerged, and these processes can be tuned to maximize the production of high-quality hydrogen. This review examines recent advancements in biomass pyrolysis by classifying them into conventional, advanced and emerging approaches. A comprehensive overview on the recent advancements in biomass pyrolysis, highlighting the current status for industrial applications is presented. Further, the impact of each technique under different approaches on conversion of biomass for hydrogen production is evaluated. Techniques, such as inline catalytic pyrolysis, microwave pyrolysis, etc., can be employed for the sustainable production of hydrogen. Finally, the techno-economic analysis is presented to understand the viability of pyrolysis at large scale. The outlook highlights discernments into future directions, aimed to overcome the current shortcomings.
Collapse
Affiliation(s)
| | | | - Abhishek Awasthi
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Abhisek Sahoo
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shazia Rehman
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Kamal Kishore Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - S Murugavelh
- CO(2) Research and Green Technologies Centre, VIT, Vellore, Tamil Nadu 632014, India
| | - Qing Huang
- College of Ecology & Environment, Hainan University, Haikou, Hainan 570228, China
| | - Edward Anthony
- Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - Paul Fennel
- Department of Chemical Engineering, Imperial College London, UK
| | - Sankar Bhattacharya
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|