1
|
Wang H, Sun Y, Zhou X, Zhu C, Wang X, Abbasi HN, Geng H, Zhu G, Wang X, Dai H. Simultaneous removal of nitrogen and phosphorus by aerobic denitrifying Paracoccus versutus JUST-3. BIORESOURCE TECHNOLOGY 2025; 428:132457. [PMID: 40164357 DOI: 10.1016/j.biortech.2025.132457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Strain JUST-3, exhibiting high-efficiency simultaneous nitrogen and phosphorus removal under aerobic conditions, was isolated and identified as Paracoccus versutus based on 16S rDNA gene sequencing and comprehensive physiological and biochemical analysis. The strain demonstrated optimal performance when cultured with sodium acetate as carbon source under the following conditions: C/N ratio of 10, P/N ratio of 0.2, 35 °C, and pH of 8.0. The variations in intermediate metabolites, the activity of functional enzymes, and the nitrogen/phosphorus balance experiments elucidated the pathways in nitrogen and phosphorus removal under aerobic conditions. Exogenous signal molecules (<50 nmol/L) could promote growth, enhance aerobic denitrification, and improve simultaneous nitrogen and phosphorus performance. The identification of signaling molecules represents a significant breakthrough, revealing novel regulatory mechanisms in microbial quorum-sensing systems and enabling precise control of microbial community behaviors. This study expands the application of aerobic denitrification and phosphorus removal technology, laying the foundation for wastewater treatment.
Collapse
Affiliation(s)
- Haoyun Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Yang Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xingkun Zhou
- Suzhou Drainage Co., Ltd, Suzhou 215000 Jiangsu Province, China.
| | - Chengyuan Zhu
- Suzhou Drainage Co., Ltd, Suzhou 215000 Jiangsu Province, China.
| | - Xiujie Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Haq Nawaz Abbasi
- Department of Environmental Science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan.
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; School of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
2
|
Tang C, Yue Q, Liu H, Dang H, Lv W, Li X, Chen Y. Optimizing operation strategy to improve storage of intracellular carbon sources in anaerobic/oxic/anoxic system: Enhanced nitrogen removal by endogenous denitrification. CHEMOSPHERE 2024; 365:143306. [PMID: 39255857 DOI: 10.1016/j.chemosphere.2024.143306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Endogenous denitrification (ED) can make full use of the carbon sources and avoid replenishment of it. However, strengthening the storage of intracellular carbon sources is an important factor in improving ED efficiency. In this study, employed batch experiments using real domestic wastewater in the anaerobic/oxic (A/O) process. The anaerobic and oxic processes were run for 4 h under ambient conditions with the dissolved oxygen (DO) concentrations in the oxic stage controlled at 0.5, 1.0, 1.5, and 3.0 mg/L, respectively. The results showed that the content of poly-β-hydroxyalkanoates (PHA) reached its peak at 60 min (1.25 mmolC/L). And with DO concentrations of 1.5 mg/L, the contents of glycogen (Gly) were 27.74 mmolC/L. Subsequently, the AOA-SBR was established to investigate its effect on the long-term nitrogen removal performance of domestic wastewater by optimizing the anaerobic time and DO concentrations. The results showed that at an anaerobic time of 60 min and DO concentration of 1.5 mg/L, the storage of the intracellular carbon sources was highest and the total nitrogen (TN) removal efficiency increased to 82.12%. In addition, Candidatus Competibacter dominated gradually in the system as the strategy was optimized.
Collapse
Affiliation(s)
- Chenxin Tang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Qiong Yue
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hong Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hongzhong Dang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Wei Lv
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Xiaofan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Yongzhi Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Cheng Y, Lu C, Gao S, Koju R, Li H, Zhu Z, Hu C, Qu J. Synchronous in-situ sludge reduction and enhanced denitrification through improving electron transfer during endogenous metabolisms with Fe(Ⅱ) addition. WATER RESEARCH 2024; 255:121472. [PMID: 38552492 DOI: 10.1016/j.watres.2024.121472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/10/2024] [Accepted: 03/13/2024] [Indexed: 04/24/2024]
Abstract
The creation of large amounts of excess sludge and residual nitrogen are critical issues in wastewater biotreatment. This study introduced Fe(II) into an oligotrophic anaerobic reactor (OARFe) that was implemented to modify an anoxic-oxic process to motivate in-situ sludge reduction and enhance denitrification under an effective electron shuttle among organic matter, nitrogen, and Fe. The addition of 15 mg L-1 Fe(II) resulted in a sludge reduction efficiency reached 32.0% with a decreased effluent nitrate concentration of 33.3%. This was mostly attributed to the electron transfer from Fe(II) to organic matters and nitrogen species in OARFe. The participation of Fe(II) led to the upregulation of Geothrix and Terrimonas, which caused active organic matter hydrolysis and cell lysis to stimulate the release of extracellular polymeric substances (EPS) and substance transfer between each layer of EPS. The higher utilization of released bioavailable dissolved organic matter improved endogenous denitrification, which can be combined with iron autotrophic denitrification to realize multiple electron donor-based nitrogen removal pathways, resulting in an increased nitrate removal rate of 58.2% in the absence of external carbon sources. These functional bacteria associated with the transformation of nitrogen and carbon and cycling between ferrous and ferric ions were enriched in OARFe, which contributed to efficient electron transport occurred both inside and outside the cell and increased 2,3,5-triphenyltetrazolium chloride electronic transport system activity by 46.9%. This contributed to the potential operational costs of chemical addition and sludge disposal of Fe-AO being 1.9 times lower than those of conventional A2O processes. These results imply that the addition of ferrous ions to an oligotrophic anaerobic zone for wastewater treatment has the potential for low-cost pollution control.
Collapse
Affiliation(s)
- Yu Cheng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Chenghai Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujia Gao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental Science and Engineering, Guilin University of Technology, Jiangan Road 12, Guilin, Guangxi 541004, China
| | - Rashmi Koju
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Zongqiang Zhu
- College of Environmental Science and Engineering, Guilin University of Technology, Jiangan Road 12, Guilin, Guangxi 541004, China.
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Yi X, Wang Z, Zhao P, Song W, Wang X. New insights on destruction mechanisms of waste activated sludge during simultaneous thickening and digestion process via forward osmosis membrane. WATER RESEARCH 2024; 254:121378. [PMID: 38430758 DOI: 10.1016/j.watres.2024.121378] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
This study delved into the efficacy of sludge digestion and the mechanisms involved in sludge destruction during the implementation of forward osmosis process for sludge thickening and digestion (FO-MSTD). Utilizing a lab-scale FO membrane reactor for the thickening and digestion of waste activated sludge (WAS), the investigation explored the effects of sludge thickening and digestion in FO-MSTD processes using draw solutions of varying concentrations. The findings underscored the significance of hydraulic retention time (HRT) as a pivotal parameter influencing the swift thickening or profound digestion of sludge. Consequently, tailoring the HRT to specific processing objectives emerged as a key strategy for achieving desired treatment outcomes. In the investigation, the use of a 1 M NaCl draw solution in the FO-MSTD process showcased enhanced thickening and digestion capabilities. This specific setup raised the concentration of mixed liquor suspended solids (MLSS) to over 30 g/L and achieved a 42.7% digestion efficiency of mixed liquor volatile suspended solids (MLVSS) within an operational timeframe of 18 days. Furthermore, the research unveiled distinct stages in the sludge digestion process of the FO-MSTD system, characterized by fully aerobic digestion and aerobic-local anaerobic co-existing digestion. In the fully aerobic digestion stage, the sludge digestion rate exhibited a steady increase, leading to the breakdown of sludge floc structures and the release of a substantial amount of nutrients into the sludge supernatant. The predominant microorganisms during this stage were typical functional microorganisms found in wastewater treatment systems. Transitioning into the aerobic-local anaerobic co-existing digestion stage, both MLSS concentration and MLVSS digestion efficiency continued to rise, accompanied by a decreasing dissolved oxygen (DO) concentration. More organic matter was released into the supernatant, and sludge microbial flocs tended to reaggregate. The localized anaerobic environment within the FO-MSTD reactor fostered an increase in the relative abundance of bacteria with nitrogen and phosphorus removal functions, thereby positively impacting the mitigation of total nitrogen (TN) and total phosphorus (TP) concentrations in the sludge supernatant. The results of this research enhance comprehension of the advanced FO-MSTD technology in the treatment of WAS.
Collapse
Affiliation(s)
- Xiawen Yi
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Pin Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Weilong Song
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
5
|
Chen Z, Feng M, Wang Y, Ling X. Comparison of treatment performance and microbial community evolution of typical dye wastewater by different combined processes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116226. [PMID: 38537479 DOI: 10.1016/j.ecoenv.2024.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
The degradation of typical dye wastewater is a focus of research in the printing and dyeing industry. In this study, a combined micro-electrolysis and microbial treatment method was established to treat refractory dye wastewater, and the pivotal factors in the microbial treatment were optimized. In the series and coupled modes, the removal rates of chroma reached 98.75% and 92.50%, and the removal rates of chemical oxygen demand (COD) reached 96.17% and 82.29%, respectively. The high-throughput sequencing results showed that the microbial communities in the microbial system varied at different treatment stages. From the culture stage to the domestication stage, the dominant phylum was Proteobacteria; however, the community abundance of microorganisms decreased. A combination of micro-electrolysis and biological methods can alter the characteristics of the microbial community, increase the number of dominant phyla, and increase the abundance of microorganisms. The degradation effect of the series mode and the overall strengthening effect of micro-electrolysis on the microorganisms were better than those of the coupled mode. In actual wastewater, the maximum removal rates of chroma, COD, total nitrogen (TN), ammonia nitrogen (NH3-N), and total phosphorus (TP) are 97.50%, 98.90%, 94.35%, 93.95%, and 91.17%, respectively. Three-dimensional fluorescence spectrum analysis showed that microbial processes could significantly degrade fluorescent components in wastewater, and methanogenic active enzymes in anaerobic processes could continue to react. The combined process can realize the efficient treatment of toxic dye wastewater by reducing the toxicity of wastewater and efficiently degrading organic matter, which has important guiding significance for the treatment of refractory dye wastewater.
Collapse
Affiliation(s)
- Zhihao Chen
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Minquan Feng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Yibo Wang
- School of Environment and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China.
| | - Xiaohui Ling
- School of Environment and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| |
Collapse
|
6
|
He Q, Yan X, Wang H, Ji Y, Li J, Liu L, Bi P, Xu P, Xu B, Ma J. Towards a better understanding of the anaerobic/oxic/anoxic-aerobic granular sludge process (AOA-AGS) for simultaneous low-strength wastewater treatment and in situ sludge reduction from ambient to winter temperatures. ENVIRONMENTAL RESEARCH 2023; 236:116822. [PMID: 37541415 DOI: 10.1016/j.envres.2023.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
The new anaerobic/oxic/anoxic-aerobic granular sludge (AOA-AGS) merits the advantages of effective carbon utilization and low-carbon treatment. However, low temperature poses stressing concerns and the resisting mechanism remains much unknown. Herein, an AOA-AGS process was configured for simultaneous nitrification, denitrification and phosphorus removal (SNDPR) with low-strength wastewater from ambient (>15 °C) to winter temperatures (<15 °C). Results showed that simultaneously advanced nutrients removal, and dramatic in situ sludge reduction (Yobs of 0.093 g MLSS/g COD) were gained regardless of seasonally decreasing temperatures. Winter temperatures even amplified Candidatus Competibacter predominating from 20.11% to 34.74%, which laid the core basis for endogenous denitrification, sludge minimization and temperature resistance. A removal model was thus proposed given the observed functional groups, and doubts were also raised for future investigations. This study would aid a better understanding on the microbial ecology and engineering aspects of the new AOA-AGS process treating low-strength wastewater at low temperatures.
Collapse
Affiliation(s)
- Qiulai He
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Xiaohui Yan
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430082, China
| | - Yaning Ji
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Jinfeng Li
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Liang Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Peng Bi
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Peng Xu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Baokun Xu
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Jingwei Ma
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
7
|
Pan Z, Li Z, Zeng B, Shen L, Lin H. Enhanced denitrification performance of granular sludge for the treatment of waste brine from ion exchange resin process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118473. [PMID: 37413732 DOI: 10.1016/j.jenvman.2023.118473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Ion exchange resin process is a widely used process in wastewater treatment plants, but its waste brine is characterized by high salinity and nitrate concentration, leading to costly treatment. This study innovatively explored the use of an up-flow anaerobic sludge bed (USB) for the treatment of waste brine from ion exchange resin process, following a pilot-scale ion exchange resin process. Specifically, the D890 ion exchange resin was employed for nitrate removal from secondary effluent, with resin regeneration using 4% NaCl solution. The USB was inoculated with anaerobic granular sludge and acclimated under various single-factor conditions, which revealed the optimal pH range of 6.5-9, salt concentration of 2%, hydraulic retention time of 12 h, C/N ratio of 3.3, and up-flow velocity of 1.5 m/h for reactor operation. This study provides a novel approach for the cost-effective treatment of waste brine from ion exchange resin process. The study found that the denitrification efficiency was highest when the NO3--N concentration was around 200 mg/L, with NO3--N and TN removal rates exceeding 95% and 90%, respectively, under optimal operating conditions. Characterization of the granular sludge during different phases of the operation revealed a significant increase in proteobacteria and gradually became the dominant species over time. This study presents a novel, cost-effective approach to treat waste brine from ion exchange resin process, and the long-term stable operation of the reactor offers a reliable option for resin regeneration wastewater treatment.
Collapse
Affiliation(s)
- Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhongqiang Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
8
|
He Q, Yan X, Xie Z, Xu P, Fu Z, Li J, Liu L, Bi P, Xu B, Ma J. Advanced low-strength wastewater treatment, side-stream phosphorus recovery, and in situ sludge reduction with aerobic granular sludge. BIORESOURCE TECHNOLOGY 2023; 386:129574. [PMID: 37506946 DOI: 10.1016/j.biortech.2023.129574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Modern paradigm has upgraded wastewater treatment plants (WWTPs) to water resources recovery facilities (WRRFs), where aerobic granular sludge (AGS) is a sewage treatment technology with promising phosphorus recovery (PR) potential. Herein, the AGS-based simultaneous nitrification, denitrification, and phosphorus removal coupling side-stream PR process (AGS-SNDPRr) was developed with municipal wastewater. Results revealed that AGS always maintained good structural stability, and pollutant removal was unaffected and effective after 40 days of anaerobic phosphorus-rich liquid extraction (fixed rate of 30%). The AGS-SNDPRr achieved a stable phosphorus recovery efficiency of 63.40%, and the side-stream PR further exaggerated in situ sludge reduction by 7.7-10%. Apart from responses of extracellular polymeric substances (EPS), the Matthew effect of typical denitrifying glycogen accumulating organisms (DGAOs) Candidatus_Competibacter up to 67.40% mainly contributed to enhanced performance of this new process. This study demonstrated a new approach for simultaneous advanced wastewater treatment, phosphorus recovery, and excess sludge minimization.
Collapse
Affiliation(s)
- Qiulai He
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Xiaohui Yan
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Zhiyi Xie
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Peng Xu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhidong Fu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Jinfeng Li
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Liang Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Peng Bi
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Baokun Xu
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Jingwei Ma
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Liu S, Wu J, Hu Z, Jiang M. Changes in microbial community during hydrolyzed sludge reduction. Front Microbiol 2023; 14:1239218. [PMID: 37720154 PMCID: PMC10502510 DOI: 10.3389/fmicb.2023.1239218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
In this study, the effects of different enzymes (lysozyme, α-amylase and neutral protease) on sludge hydrolysis efficiency and microbial community in sequencing batch reactor (SBR) were introduced. The results showed that the hydrolysis efficiencies of the three enzymes were 48.5, 22.5 and 31%, respectively, compared with the accumulated sludge discharge of the blank control group. However, it has varying degrees of impact on the effluent quality, and the denitrification and phosphorus removal effect of the system deteriorates. The lysozyme that achieves the optimal sludge hydrolysis effect of 48.5% has the greatest impact on the chemical oxygen demand (COD), total nitrogen (TN), and nitrate nitrogen (NO3--N) of the effluent. The sludge samples of the control group and the groups supplemented with different enzyme preparations were subjected to high-throughput sequencing. It was found that the number of OTUs (Operational Taxonomic Units) of the samples was lysozyme > α-amylase > blank control > neutral protease. Moreover, the abundance grade curve of the sludge samples supplemented with lysozyme and α-amylase was smoother, and the community richness and diversity were improved by lysozyme and α-amylase. The species diversity of the sludge supplemented with lysozyme and neutral protease was great, and the community succession was obvious. The introduction of enzymes did not change the main microbial communities of the sludge, which were mainly Proteobacteria, Actinobacteria and Bacteroidetes. The effects of three enzyme preparations on sludge reduction and microbial diversity during pilot operation were analyzed, the gap in microbial research was filled, which provided theoretical value for the practical operation of enzymatic sludge reduction.
Collapse
Affiliation(s)
- Shaomin Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Anhui University of Science and Technology), Huainan, China
| | - Jiating Wu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Anhui University of Science and Technology), Huainan, China
| | - Ziyan Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Anhui University of Science and Technology), Huainan, China
| | - Mengyu Jiang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Anhui University of Science and Technology), Huainan, China
| |
Collapse
|
10
|
Ma J, Ji Y, Fu Z, Yan X, Xu P, Li J, Liu L, Bi P, Zhu L, Xu B, He Q. Performance of anaerobic/oxic/anoxic simultaneous nitrification, denitrification and phosphorus removal system overwhelmingly dominated by Candidatus_Competibacter: Effect of aeration time. BIORESOURCE TECHNOLOGY 2023:129312. [PMID: 37307956 DOI: 10.1016/j.biortech.2023.129312] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
The anaerobic/oxic/anoxic simultaneous nitrification, denitrification and phosphorus removal process (AOA-SNDPR) is a promising technology for enhanced biological wastewater treatment and in situ sludge reduction. Herein, the effects of aeration time (90, 75, 60, 45, and 30 min, respectively) on AOA-SNDPR were evaluated including simultaneous nutrients removal, sludge characteristics, and microbial community evolution, where the role of a denitrifying glycogen accumulating organisms, Candidatus_Competibacter, was re-explored given its overwhelming dominance. Results revealed that nitrogen removal was more vulnerable, and a moderate aeration period of 45-60 min mostly favored nutrients removal. Low observed sludge yields (Yobs) were obtained with decreased aeration (as low as 0.02 g MLSS/g COD), while MLVSS/MLSS got increased. The dominance of Candidatus_Competibacter was proven to be the key to endogenous denitrifying and in situ sludge reduction. This study would aid the more carbon- and energy-efficient aeration strategy for AOA-SNDPR systems treating low-strength municipal wastewater.
Collapse
Affiliation(s)
- Jingwei Ma
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Yaning Ji
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhidong Fu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Xiaohui Yan
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Peng Xu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Jinfeng Li
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Liang Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Peng Bi
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Liang Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Baokun Xu
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Qiulai He
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China.
| |
Collapse
|
11
|
Peng SM, Luo HC, Wang ZH, Yang SS, Guo WQ, Ren NQ. Enhanced in-situ sludge reduction of the side-stream process via employing micro-aerobic approach in both mainstream and side-stream. BIORESOURCE TECHNOLOGY 2023; 377:128914. [PMID: 36940881 DOI: 10.1016/j.biortech.2023.128914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Side-stream reactor (SSR), as an in-situ sludge reduction process with high sludge reduction efficiency (SRE) and less negative impact on effluent, has been widely researched. In order to reduce cost and promote large-scale application, the anaerobic/anoxic/micro-aerobic/oxic bioreactor coupled with micro-aerobic SSR (AAMOM) was used to investigate nutrient removal and SRE under short hydraulic retention time (HRT) of SSR. When HRT of SSR was 4 h, AAMOM system achieved 30.41% SRE, while maintaining carbon and nitrogen removal efficiency. Micro-aerobic in mainstream accelerated the hydrolysis of particulate organic matter (POM) and promoted denitrification. Micro-aerobic in side-stream increased cell lysis and ATP dissipation, thus increasing SRE. Microbial community structure indicated that the cooperative interactions among hydrolytic, slow growing, predatory and fermentation bacteria played key roles in improving SRE. This study confirmed that SSR coupled micro-aerobic was a promising and practical process, which could benefit nitrogen removal and sludge reduction in municipal wastewater treatment plants.
Collapse
Affiliation(s)
- Si-Mai Peng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hai-Chao Luo
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Han Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
12
|
Sun Y, Han T, Lu W, Wang Y, Jiang D, Abbasi HN, Guo Z, Zhang S, Li B, Wang X, Dai H. Effects of nano metal oxide particles on denitrifying phosphorus removal system: Potential stress mechanism and recovery strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162706. [PMID: 36906010 DOI: 10.1016/j.scitotenv.2023.162706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The accumulation of nano metal oxide particles (NMOPs) in municipal sewage treatment systems harms the microbial community and its metabolism in activated sludge system, resulting in the degradation of its pollutants removal performance. In this work, the stress effect of NMOPs on the denitrifying phosphorus removal system was systematically investigated in terms of pollutants removal performance, key enzyme activities, microbial community diversity and abundances, and intracellular metabolites. Among the ZnO NPs, TiO2 NPs, CeO2 NPs, and CuO NPs, the ZnO NPs showed the most significant impacts with the chemical oxygen demand, total phosphorus, and nitrate nitrogen removal ratio decreased from above 90 % to 66.50 %, 49.13 %, and 57.11 %, respectively. The addition of surfactants and chelating agents could relieve the toxic effect of NMOPs on the denitrifying phosphorus removal system, and the chelating agents were more effective than surfactants in performance recovery. After adding ethylene diamine tetra acetic acid, the removal ratio of chemical oxygen demand, total phosphorus, and nitrate nitrogen under ZnO NPs stress was restored to 87.31 %, 88.79 %, and 90.35 %, respectively. The study provides valuable knowledge to better understand the impacts and stress mechanism of NMOPs on activated sludge systems and provides a solution to recover the nutrients removal performance of denitrifying phosphorus removal system under NMOPs stress.
Collapse
Affiliation(s)
- Yang Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ting Han
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Wenxin Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yingqi Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Deyi Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Haq Nawaz Abbasi
- Department of Environmental science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan.
| | - Zechong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Bing Li
- Jiangsu Zhongchuang Qingyuan Technology Co., Ltd., Yancheng 224000, China
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Ma J, Yu Z, Shu L, Ke S, He Q, Zhao Q, Ke Q. The disinhibition effect of iron-based particles on anaerobic digestion of florfenicol-containing cow manure: Performance and mechanism. ENVIRONMENTAL RESEARCH 2023; 223:115471. [PMID: 36773644 DOI: 10.1016/j.envres.2023.115471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The overuse of antibiotics has caused problems such as environmental pollution, increased antibiotic resistance of pathogenic bacteria, and inhibition of engineered microbial processes such as anaerobic digestion (AD). At present, mitigating the inhibition of antibiotics on the process of microbial recycling of organic matter by using additives has always been a research hotspot. In this study, the effects of the addition of three iron-based particles including zero-valent iron (ZVI), Fe2O3 and Fe3O4 on the biogas yield during the AD of cow manure containing florfenicol (FLO) were studied. It was found that by alleviating the acid accumulation, the addition of low-concentration ZVI, Fe2O3 and high-concentration Fe3O4 enhanced the maximum methane production rate of FLO-containing cow manure during AD to 3.5, 1.7 and 3.6 times, respectively, while high concentration of ZVI will lead to the crash of the AD system due to the rise of pH. Within the concentration range of iron-based particles dosed in this study, the Fe3O4 dosage showed a significant positive correlation with the cumulative methane production enhancement rate (p < 0.01). The sum of the relative abundances of Limnobacter and Pseudomonas was correlated with the absolute abundance of floR gene with the Pearson correlation coefficient of 0.9457 (p < 0.01), indicating the possibility of these two genera being the potential host bacteria for floR gene.
Collapse
Affiliation(s)
- Jingwei Ma
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Zefang Yu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Linxiang Shu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Shuizhou Ke
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Qiulai He
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China.
| | - Quanbao Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China
| | - Qiang Ke
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, PR China
| |
Collapse
|