1
|
Jofre FM, Prado CA, Shibukawa VP, Rodrigues BG, Sarangi PK, Chandel AK. Critical analysis of process parameters towards smart bioreactors development in biorefinery for biorenewables production. Int J Biol Macromol 2025; 305:140957. [PMID: 39947535 DOI: 10.1016/j.ijbiomac.2025.140957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
The development of sustainable biotechnological processes is important for advancements in production of renewable chemicals, biofuels, and materials. A significant challenge is handling high biomass total solids (TS) loading, which is significant to enhance the cost-effectiveness and efficiency of biorefineries. Further, advancements in biomass pretreatment methods, such as hydrodynamic cavitation, that are employed to disrupt the complex structure of biomass, facilitating enzymatic hydrolysis and improving overall process yields, have shown promising results. Efficient pretreatment, novel enzyme evolution and hydrolysis using high TS concentration coupled with process intensification approaches i.e. simultaneous saccharification and co-fermentation (SSCF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP) could be revolutionary in the biomass refineries. There are some key factors influencing reactor performance, such as biomass characteristics, mass transfer, enzyme characteristics, rheology, and heat transfer. These factors are critical in overcoming the challenges associated with high TS loading, including increased viscosity, microorganism selection and reduced mixing efficiency. This review highlights such critical factors when dealing with high biomass loading, by presenting strategies and reactor configurations to improve the scalability and economic viability of lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Fanny Machado Jofre
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, 12602-810 Lorena, Brazil.
| | - Carina Aline Prado
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, 12602-810 Lorena, Brazil
| | - Vinícius Pereira Shibukawa
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, 12602-810 Lorena, Brazil
| | - Bruna Green Rodrigues
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, 12602-810 Lorena, Brazil
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal, Manipur 795004, India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, 12602-810 Lorena, Brazil.
| |
Collapse
|
2
|
Liu Q, Madadi M, Al Azad S, Lu X, Yan H, Zhou Q, Sun C, Sun F. Unveiling the mechanisms of mixed surfactant synergy in passivating lignin-cellulase interactions during lignocellulosic saccharification. J Colloid Interface Sci 2025; 681:404-415. [PMID: 39622095 DOI: 10.1016/j.jcis.2024.11.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 12/15/2024]
Abstract
Surfactants can synergistically enhance the enzymatic hydrolysis of lignocellulosic biomass, achieving higher sugar yields at lower enzyme loading. However, the exact mechanism by which mixed surfactants passivate lignin-cellulase interactions is not fully understood. This study found that the combination of ternary non-ionic and cationic surfactants (Tween 60, Triton X-114, and CTAB) significantly reduced the non-productive adsorption of lignin, with decreases of 35.4 %-55.4 % in equilibrium adsorption (We, 23.2 mg/g) compared to the single surfactant and the control. Meanwhile, mixed surfactants disrupted the entropy-enthalpy co-driven process for non-productive cellulase adsorption while promoting the desorption process. Non-ionic surfactants mainly contributed to reducing the hydrophobic interactions between lignin and cellulases. Positively charged CTAB enabled nonionic surfactants to form stronger H-bonds with lignin by electrophilic modification, and Triton X-114 increased van der Waals forces. Although surfactant-modified lignin exhibited lower hydrophobicity, zeta potential, and a more stable hydrogen bond network, the inhibitory effects of lignin-cellulase interactions by mixed surfactants were susceptible to lignin properties. According to the structure-activity relationship analysis (R2 > 0.80), the main influencing factors included particle size, aliphatic/phenolic OH group contents, contact angle, and zeta potential of lignin. The study on the synergistic passivation of lignin-cellulase interactions by multi-component surfactant systems provides some theoretical insights for selecting and customarily designing effective additives for efficient enzymatic hydrolysis in lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Qiangqiang Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Salauddin Al Azad
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xingmei Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Yan
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, Harbin 150040, China; School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Qing Zhou
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Liu Q, Madadi M, Al Azad S, Sun C, Zhang E, Yan J, Samimi A, Sun F. In-depth recognition of mixed surfactants maintaining the enzymatic activity of cellulases through stabilization of their spatial structures. BIORESOURCE TECHNOLOGY 2025; 416:131756. [PMID: 39510354 DOI: 10.1016/j.biortech.2024.131756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
Mixed surfactants improve the enzymatic hydrolysis of lignocellulosic substrates by enhancing cellulase stability against heat, pH, shear, and air-liquid interface stress. Under conditions of multiple factorial stresses (50 °C, pH 4.8, 180 rpm, and 15.5 cm2 air-liquid interface), cellulase with ternary surfactants (Tween 60/Triton X-114/CTAB, the molar ratio 14:5.5:1) retained 84 % of its activity after 48 h of incubation, representing 1.15 and 1.29 folds that of the cellulase activity with the single Tween 60 and with no surfactants, respectively. This is attributed to the fact that ternary surfactants possess better rheology modulation and air-liquid interface competitiveness. In addition, the computational approach demonstrated that the ternary surfactants were capable of forming stronger hydrophobic and hydrogen-bond interactions with cellulase enzymes, thus maintaining its secondary structure and preventing the detrimental α-helix to β-sheet transformation known to compromise cellulase activity. This synergy offers valuable insights into surfactant-cellulase interactions and supports efficient enzymatic hydrolysis in biorefineries.
Collapse
Affiliation(s)
- Qiangqiang Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meysam Madadi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Salauddin Al Azad
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chihe Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ezhen Zhang
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Junshu Yan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Abdolreza Samimi
- Chemical Engineering Department, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
| | - Fubao Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Sánchez-Muñoz S, Balbino TR, de Oliveira F, Rocha TM, Barbosa FG, Vélez-Mercado MI, Marcelino PRF, Antunes FAF, Moraes EJC, dos Santos JC, da Silva SS. Surfactants, Biosurfactants, and Non-Catalytic Proteins as Key Molecules to Enhance Enzymatic Hydrolysis of Lignocellulosic Biomass. Molecules 2022; 27:8180. [PMID: 36500273 PMCID: PMC9739445 DOI: 10.3390/molecules27238180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Lignocellulosic biomass (LCB) has remained a latent alternative resource to be the main substitute for oil and its derivatives in a biorefinery concept. However, its complex structure and the underdeveloped technologies for its large-scale processing keep it in a state of constant study trying to establish a consolidated process. In intensive processes, enzymes have been shown to be important molecules for the fractionation and conversion of LCB into biofuels and high-value-added molecules. However, operational challenges must be overcome before enzyme technology can be the main resource for obtaining second-generation sugars. The use of additives is shown to be a suitable strategy to improve the saccharification process. This review describes the mechanisms, roles, and effects of using additives, such as surfactants, biosurfactants, and non-catalytic proteins, separately and integrated into the enzymatic hydrolysis process of lignocellulosic biomass. In doing so, it provides a technical background in which operational biomass processing hurdles such as solids and enzymatic loadings, pretreatment burdens, and the unproductive adsorption phenomenon can be addressed.
Collapse
Affiliation(s)
- Salvador Sánchez-Muñoz
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Thércia R. Balbino
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Fernanda de Oliveira
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Thiago M. Rocha
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Fernanda G. Barbosa
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Martha I. Vélez-Mercado
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Paulo R. F. Marcelino
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Felipe A. F. Antunes
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Elisangela J. C. Moraes
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Julio C. dos Santos
- Biopolymers, Bioreactors, and Process Simulation Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Silvio S. da Silva
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| |
Collapse
|