1
|
Ji S, Wu R, Zhang Y, Zhao H, Qin H, Liu J, Li YY. Robust aeration coefficient control based on pH feedback towards stable NO 2--N/NH 4+-N ratio in large pilot-scale partial nitritation reactor treating food waste digestate. BIORESOURCE TECHNOLOGY 2025; 432:132676. [PMID: 40368311 DOI: 10.1016/j.biortech.2025.132676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/25/2025] [Accepted: 05/11/2025] [Indexed: 05/16/2025]
Abstract
Two-stage partial nitritation/anammox (PNA) system is a promising technology for treating food waste digestate (FWD). Maintaining a stable NO2--N/NH4+-N ratio in partial nitritation (PN) is essential for the successful implementation of two-stage PNA. Although the aeration coefficient (AC) is a key regulatory parameter, its stability is challenged by fluctuations in chemical oxygen demand (COD). In this study, a robust AC control strategy based on pH feedback was developed to achieve precise PN ratio. The pH was negatively correlated with the ratio, with the optimal value achieved at pH 7.91. This strategy effectively mitigated the impact of COD variations, maintaining a stable NO2--N/NH4+-N of 1.27 ± 0.10. Furthermore, the relative abundance of Nitrosomonas increased from 1.0 % to 24.2 %, ensuring stable PN performance. These findings highlight that integrating AC control with pH feedback is an effective approach to maintaining the NO2--N/NH4+-N ratio, facilitating the engineering-scale application of two-stage PNA for FWD treatment.
Collapse
Affiliation(s)
- Shenghao Ji
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Ruixin Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yixuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Haoran Zhao
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Haojie Qin
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
2
|
Cao L, He Y, Li YY, Kong Z, Jiang H, Hu Y, Zhang X. Start-up of Anammox-HAP in IC reactors: Revelation of sludge characteristics and microbial community structure. ENVIRONMENTAL RESEARCH 2025; 266:120605. [PMID: 39667484 DOI: 10.1016/j.envres.2024.120605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The scarcity of seed sludge poses a significant barrier to the advancement of anaerobic ammonia oxidation (anammox) process. In this investigation, two alternative sludge (anaerobic granular sludge (AGS) and activated flocculent sludge (AFS)) were employed to start up the anammox process in internal circulation (IC) reactors with the hydroxyapatite (HAP) strategy. Both reactors achieved rapid start-up on days 83 and 53, respectively. Subsequently, a nitrogen removal rate (NRR) of 1.34 gN/L/d was attained at a nitrogen loading rate (NLR) of 1.39 gN/L/d on days 107 and 81 correspondingly. The analysis of granular properties revealed that the anammox granular sludge (AMXGS) transformed from AGS exhibited superior granular size distribution and settling performance. Furthermore, the assessment of microbial community structure demonstrated that inoculating AFS was capable of enriching anammox bacteria (AnAOB) in a shorter time. Last but most importantly, this study provides a comprehensive analysis of the distinct granulation routes of AGS and AFS. AGS predominantly underwent a "broken-adsorption-granulation" process, whereas AFS exhibited not only a typical "adsorption-granulation" process but also a "biofilm growth-granulation" cycle process. The findings of this study offer a novel approach for quickly initiating anammox process when inoculating alternative sludge.
Collapse
Affiliation(s)
- Liwen Cao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yibing He
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hongyu Jiang
- China Water Investment Group Co., Ltd, No. 16, Ertiao, Baiguang Road, Xicheng District, Beijing 100053, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xueying Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Yuan M, Shan Q, Fu M, Deng M, Wang J, Deng F. Larger hydroxyapatite aggregation from Ca 2+ adhesion in ANAMMOX granular sludge caused by high dissolved oxygen. CHEMOSPHERE 2024; 350:141158. [PMID: 38199496 DOI: 10.1016/j.chemosphere.2024.141158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/03/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
Anaerobic ammonia oxidation (ANAMMOX), a sustainable biological process, is promising to remove NH4+-N from municipal sewage. In this study, results showed that the anammox granular sludge morphology changes with the alternation of dissolved oxygen (DO), mainly attributing to the adhesion of calcium ions (Ca2+) to the surface of sludge particles. Diverse characterization methods revealed that gray adhesions in the form of hydroxyapatite covered the original holes on the anammox granular sludge surface, including scanning Electron Microscopy (SEM), digital camera images, Energy Dispersive Spectrometer (EDS), and X-ray diffraction (XRD). Ex-situ degradation of NH4+-N and NO2--N yielded diverse outcomes. The protein to polysaccharide ratio (PN/PS) in the total extracellular polymeric substances (EPS) across 4 size groups demonstrated a decrease under O2 exposure. Microbial community analysis indicated norank_f_A4b and Nitrolancea being the most abundant genus under O2 exposure at day 1 and day 100, respectively. These findings offer an effective strategy to prevent size-larger granular sludge from deteriorating through changing DO and Ca2+ in municipal wastewater in ANAMMOX.
Collapse
Affiliation(s)
- Mu Yuan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qiu Shan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Mengqi Fu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Mengxuan Deng
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jue Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fengxia Deng
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
4
|
Lin L, Zhang Y, Li YY. Enhancing start-up strategies for anammox granular sludge systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166398. [PMID: 37604370 DOI: 10.1016/j.scitotenv.2023.166398] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has been developed as one of the optimal alternatives to the conventional biological nitrogen removal process because of its high nitrogen removal capacity and low energy consumption. However, the slow growth rate of anammox bacteria and its high sensitivity to environmental changes have resulted in fewer anammox sludge sources for process start-up and a lengthy start-up period. Given that anammox microorganisms tend to aggregate, granular-anammox sludge is a frequent byproduct of the anammox process. In this study, we review state-of-the-art strategies for promoting the formation of anammox granules and the start-up of the anammox process based on the literature of the past decade. These strategies are categorized as the transformation of alternative sludge, the addition of accelerators, the introduction of functional carriers, and the implementation of other physical methods. In addition, the formation mechanism of anammox granules, the operational performance of various strategies, and their promotion mechanisms are introduced. Finally, prospects are presented to indicate the gaps in contemporary research and the potential future research directions. This review functions as a summary guideline and theoretical reference for the cultivation of granular-anammox sludge, the start-up of the anammox process, and its practical application.
Collapse
Affiliation(s)
- Lan Lin
- College of the Environment & Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
5
|
Lin C, Liu Y, Li YY, Liu J. Difference of high-salinity-induced inhibition of ammonia-oxidising bacteria and nitrite-oxidising bacteria and its applications. BIORESOURCE TECHNOLOGY 2023; 387:129640. [PMID: 37549713 DOI: 10.1016/j.biortech.2023.129640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023]
Abstract
The difficulty in achieving stable partial nitritation (PN) is a challenge that limits the application of mainstream anaerobic ammonium oxidation (anammox). This study proposes high-salinity treatment as a novel strategy for inactivating nitrite-oxidising bacteria (NOB). The study indicated that NOB are more sensitive to high salinity than ammonia-oxidising bacteria (AOB). The inhibitory effect on the nitrifier gradually increased with increasing salinity from 0 to 100 g NaCl/L. After 24 h and 35 g NaCl/L inhibition, the AOB and NOB activities were 36.65% and 7.15% of their original activities, respectively. After one high-salinity treatment, nitrite accumulation rate (NAR) was above 33% during nitrification. Moreover, the sludge characteristics remained almost unchanged after suppression. A novel process for achieving mainstream PN was proposed and evaluated based on the results. An energy consumption analysis showed that mainstream PN/anammox based on the ex situ high-salinity treatment can achieve higher energy self-sufficiency compared with activated sludge.
Collapse
Affiliation(s)
- Chihao Lin
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yanxu Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
6
|
Cheng H, Qin H, Liang L, Li YY, Liu J. Towards advanced simultaneous nitrogen removal and phosphorus recovery from digestion effluent based on anammox-hydroxyapatite (HAP) process: Focusing on a solution perspective. BIORESOURCE TECHNOLOGY 2023; 381:129117. [PMID: 37141995 DOI: 10.1016/j.biortech.2023.129117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
In this paper, the state-of-the-art information on the anammox-HAP process is summarized. The mechanism of this process is systematically expounded, the enhancement of anammox retention by HAP precipitation and the upgrade of phosphorus recovery by anammox process are clarified. However, this process still faces several challenges, especially how to deal with the ∼ 11% nitrogen residues and to purify the recovered HAP. For the first time, an anaerobic fermentation (AF) combined with partial denitrification (PD) and anammox-HAP (AF-PD-Anammox-HAP) process is proposed to overcome the challenges. By AF of the organic impurities of the anammox-HAP granular sludge, organic acid is produced to be used as carbon source for PD to remove the nitrogen residues. Simultaneously, pH of the solution drops, which promotes the dissolution of some inorganic purities such as CaCO3. In this way, not only the inorganic impurities are removed, but the inorganic carbon is supplied for anammox bacteria.
Collapse
Affiliation(s)
- Hui Cheng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Haojie Qin
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Lei Liang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|