1
|
Zhao H, Ju X, Nie Y, James TY, Liu XY. High-throughput screening carbon and nitrogen sources to promote growth and sporulation in Rhizopus arrhizus. AMB Express 2024; 14:76. [PMID: 38942930 PMCID: PMC11213844 DOI: 10.1186/s13568-024-01733-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Rhizopus arrhizus is a saprotrophic, sometimes clinically- and industrially-relevant mold (Mucorales) and distributed worldwide, suggesting it can assimilate a broad spectrum of substrates. Here, 69 strains of R. arrhizus were investigated by using the Biolog FF MicroPlate for the profiles of utilizing 95 carbon and nitrogen substrates. The study showed that most R. arrhizus strains were similar in average well color development (AWCD) and substrate richness (SR). Nevertheless, 13 strains were unique in principal component analyses, heatmap, AWCD, and SR analyses, which may imply a niche differentiation within R. arrhizus. The species R. arrhizus was able to utilize all the 95 carbon and nitrogen substrates, consistent with the hypothesis of a great metabolic diversity. It possessed a substrate preference of alcohols, and seven substrates were most frequently utilized, with N-acetyl-D-galactosamine and L-phenylalanine ranking at the top of the list. Eight substrates, especially L-arabinose and xylitol, were capable of promoting sporulation and being applied for rejuvenating degenerated strains. By phenotyping R. arrhizus strains in carbon and nitrogen assimilation capacity, this study revealed the extent of intra-specific variability and laid a foundation for estimating optimum substrates that may be useful for industrial applications.
Collapse
Affiliation(s)
- Heng Zhao
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Xiao Ju
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate School, China Pharmaceutical University, Nanjing, 211198, China
| | - Yong Nie
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243002, China
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109-1048, USA
| | - Xiao-Yong Liu
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China.
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Rai A, Sharma VK, Sharma M, Singh SM, Singh BN, Pandey A, Nguyen QD, Gupta VK. A global perspective on a new paradigm shift in bio-based meat alternatives for healthy diet. Food Res Int 2023; 169:112935. [PMID: 37254360 DOI: 10.1016/j.foodres.2023.112935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 06/01/2023]
Abstract
A meat analogue is a casserole in which the primary ingredient is something other than meat. It goes by various other names, such as meat substitute, fake meat, alternative meat, and imitation meat. Consumers growing interest in improving their diets and the future of the planet have contributed to the move towards meat substitutes. This change is due to the growing popularity of low-fat and low-calorie diets, the rise of flexitarians, the spread of animal diseases, the loss of natural resources, and the need to cut down on carbon emissions, which lead to greenhouse effects. Plant-based meat, cultured meat, algal protein-based meat, and insect-based meat substitutes are available on the market with qualities like appearance and flavor similar to those of traditional meat. Novel ingredients like mycoprotein and soybean leg haemoglobin are mixed in with the more traditional soy proteins, cereals, green peas, etc. Plant-based meat is currently more popular in the West, but the growing interest in this product in Asian markets indicates the industry in this region will expand rapidly in the near future. Future growth in the food sector can be anticipated from technologies like lab-grown meat and its equivalents that do not require livestock breeding. Insect-based products also hold great potential as a new source of protein for human consumption. However, product safety and quality should be considered along with other factors such as marketability and affordability.
Collapse
Affiliation(s)
- Akanksha Rai
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vivek K Sharma
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut- Condorcet, 7800 ATH, Belgium
| | - Shiv M Singh
- Department of Botany, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| | - Anita Pandey
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Quang D Nguyen
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Ménesi út 45, Hungary
| | - Vijai Kumar Gupta
- Biorefiningand Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Centerfor Safe and Improved Foods, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
3
|
Zhong Y, Lin D, Li S, Wang Q, Liu H, Ma L, Liu H. Enhanced nitrogen removal via Yarrowia lipolytica-mediated nitrogen and related metabolism of Chlorella pyrenoidosa from wastewater. Front Bioeng Biotechnol 2023; 11:1159297. [PMID: 37425353 PMCID: PMC10325826 DOI: 10.3389/fbioe.2023.1159297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
We investigated the optimum co-culture ratio with the highest biological nitrogen removal rate, revealing that chemical oxygen demand, total nitrogen (TN), and ammoniacal nitrogen (NH3-N) removal was increased in the Chlorella pyrenoidosa and Yarrowia lipolytica co-culture system at a 3:1 ratio. Compared with the control, TN and NH3-N content in the co-incubated system was decreased within 2-6 days. We investigated mRNA/microRNA (miRNA) expression in the C. pyrenoidosa and Y. lipolytica co-culture after 3 and 5 days, identifying 9885 and 3976 differentially expressed genes (DEGs), respectively. Sixty-five DEGs were associated with Y. lipolytica nitrogen, amino acid, photosynthetic, and carbon metabolism after 3 days. Eleven differentially expressed miRNAs were discovered after 3 days, of which two were differentially expressed and their target mRNA expressions negatively correlated with each other. One of these miRNAs regulates gene expression of cysteine dioxygenase, hypothetical protein, and histone-lysine N-methyltransferase SETD1, thereby reducing amino acid metabolic capacity; the other miRNA may promote upregulation of genes encoding the ATP-binding cassette, subfamily C (CFTR/MRP), member 10 (ABCC10), thereby promoting nitrogen and carbon transport in C. pyrenoidosa. These miRNAs may further contribute to the activation of target mRNAs. miRNA/mRNA expression profiles confirmed the synergistic effects of a co-culture system on pollutant disposal.
Collapse
Affiliation(s)
- Yuming Zhong
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Danni Lin
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Sufen Li
- Institute of Water Environment Engineering, Xinhua College of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qin Wang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lukai Ma
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Huifan Liu
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Lin BL, Lee DJ, Mannina G, Guo W. Advanced biological technologies for removal and recovery of reactive nitrogen (Nr) from wastewaters. BIORESOURCE TECHNOLOGY 2023; 368:128327. [PMID: 36396034 DOI: 10.1016/j.biortech.2022.128327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Bin-Le Lin
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| | - Giorgio Mannina
- Engineering Department - Palermo University, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney 2007, NWS, Australia
| |
Collapse
|