1
|
Yang R, Sha Y, Sun Z, Yang B, Solangi F. Role of Microbial Communities and Their Functional Gene in Anammox Process for Biodegradation of Bisphenol A and S in Pharmaceutical Wastewater. TOXICS 2025; 13:252. [PMID: 40278568 PMCID: PMC12031610 DOI: 10.3390/toxics13040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
Substantial amounts of nitrogenous (N) compounds, as well as bisphenol A (BPA) and bisphenol S (BPS), contribute to the impurities of pharmaceutical contamination (PC) in wastewater, which have detrimental effects on the environment, humans, and aquaculture. The anammox processes is primarily used to treat wastewater contamination, in which certain microbial communities play a crucial role. In this regard, the present study focuses on microbial communities and the functional genes involved in the anammox process. Further, the current study highlights the secondary (biological) and tertiary (advanced) methods; these techniques are more effective solutions for PC treatment. Anammox bacteria are the primary drivers of the wastewater's ammonium and nitrite removal process. However, overall, 25 anammox species have been recognized between five important genera, including Anammoxoglobus, Anammoximicrobium, Brocadia, Kuenenia, and Jettenia, which are mainly found in activated sludge and marine environments. The group of bacteria called anammox has genes that encode enzymes such as hydrazine synthase (HZS), hydrazine dehydrogenase (HDH), nitrite oxidoreductase reductase (NIR), hydroxylamine oxidoreductase (HAO), and ammonium monooxygenase (AMO). The anammox process is responsible for developing about 30% to 70% N gases worldwide, making it a critical component of the nitrogen cycle as well. Therefore, this review paper also investigates the pathways of hydrazine, an intermediate in the anammox process, and discusses the potential way to significantly decrease the N-compound contamination from wastewater systems and the environmental effects of determined organic contaminants of BPA and BPS.
Collapse
Affiliation(s)
- Ruili Yang
- Yancheng Institute of Technology, Yancheng 224051, China; (R.Y.); (Y.S.); (Z.S.)
| | - Yonghao Sha
- Yancheng Institute of Technology, Yancheng 224051, China; (R.Y.); (Y.S.); (Z.S.)
| | - Zhuqiu Sun
- Yancheng Institute of Technology, Yancheng 224051, China; (R.Y.); (Y.S.); (Z.S.)
| | - Bairen Yang
- Yancheng Institute of Technology, Yancheng 224051, China; (R.Y.); (Y.S.); (Z.S.)
| | - Farheen Solangi
- Research Centre of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
2
|
Fu K, Yang W, Fu S, Bian Y, Huo A, Guan T, Li X, Zhang R, Jing H. Effective organic matter removal via bio-adsorption prior to anammox process and utilization of carbon-rich sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123777. [PMID: 39700917 DOI: 10.1016/j.jenvman.2024.123777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Excessive organic matter in the anaerobic ammonia oxidation (Anammox) leads to the growth of a large number of heterotrophic bacteria, which disrupts the anaerobic ammonia oxidation. The adsorption-anaerobic ammonia oxidation process can effectively reduce excessive organic matter, capturing it instead of consuming it, which is a sustainable development technology. In this study, utilizing the excellent adsorption performance of aerobic granular sludge (AGS), an adsorption-regeneration process was employed to remove organic matter at the front end of the Anammox process through bio-adsorption in an artificial simulated domestic sewage environment, and it was successfully used for denitrification. Stirring rate is a key factor affecting sludge granulation. As a parallel experiment of sludge granulation, two Sequencing Batch Reactors (SBRs) (R1 and R2) were operated simultaneously at different stirring rates. After 153 days, the particle size of the two reactors was analyzed, revealing that the proportion of particles larger than 200 μm was over 50%, and granular sludge was successfully formed in both reactors. Long-term operational results indicate that at a temperature of 16.5 ± 1 °C, varying initial pH levels (6.5, 6.7, 7.2, and 8.5) significantly affect the removal efficiency of chemical oxygen demand (COD). COD is rapidly adsorbed and removed within a short period. Among the tested initial pH values, a pH of 6.7 yielded the best total chemical oxygen demand (tCOD) removal efficiency, achieving up to 95%. Additionally, the study examined the effects of different carbon sources on denitrification, revealing that under carbon-rich conditions, the denitrification rate was highest, reaching 1.44 mg N/(g VSS·h). Compared to endogenous denitrification, the denitrification rate increased by 40%, and the nitrate (NO₃⁻-N) removal efficiency reached 100%.
Collapse
Affiliation(s)
- Kunming Fu
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Wenbing Yang
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Sibo Fu
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yihao Bian
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Aotong Huo
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Teng Guan
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xueqin Li
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ruibao Zhang
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hao Jing
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
3
|
Chang BZ, Zhang S, Chen DZ, Gao KT, Yang GF. Performance, kinetic characteristics and bacterial community of short-cut nitrification and denitrification system at different ferrous ion conditions. Biodegradation 2024; 35:621-639. [PMID: 38619793 DOI: 10.1007/s10532-024-10080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/06/2024] [Indexed: 04/16/2024]
Abstract
In order to explore the operation performance, kinetic characteristics and bacterial community of the short-cut nitrification and denitrification (SND) system, the SND system with pre-cultured short cut nitrification and denitrification sludge was established and operated under different ferrous ion (Fe (II)) conditions. Experimental results showed that the average NH4+-N removal efficiency (ARE) of SND system was 97.3% on Day 5 and maintained a high level of 94.9% ± 1.3% for a long operation period. When the influent Fe(II) concentration increased from 2.3 to 7.3 mg L-1, the sedimentation performance, sludge concentration and organic matter removal performance were improved. However, higher Fe(II) of 12.3 mg L-1 decreased the removal of nitrogen and CODCr with the relative abundance (RA) of Proteobacteria and Bacteroidetes decreased to 30.28% and 19.41%, respectively. Proteobacteria, Bacteroidetes and Firmicutes were the dominant phyla in SND system. Higher Fe(II) level of 12.3 mg L-1 increase the RA of denitrifying genus Trichococcus (33.93%), and the denitrifying genus Thauera and Tolumonas dominant at Fe(II) level of no more than 7.3 mg L-1.
Collapse
Affiliation(s)
- Ben-Ze Chang
- Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, People's Republic of China
| | - Shuai Zhang
- Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, People's Republic of China
| | - Dong-Zhi Chen
- Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, People's Republic of China
- Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316022, People's Republic of China
| | - Kai-Tuo Gao
- Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, People's Republic of China
- Focused Photonics Limited Company, Hangzhou, No.760, Bin'an Road, Binjiang District, Hangzhou, 310052, People's Republic of China
| | - Guang-Feng Yang
- Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, People's Republic of China.
- Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316022, People's Republic of China.
| |
Collapse
|
4
|
Chen A, Li H, Wu H, Song Z, Chen Y, Zhang H, Pang Z, Qin Z, Wu Y, Guan X, Huang H, Li Z, Qiu G, Wei C. Anaerobic cyanides oxidation with bimetallic modulation of biological toxicity and activity for nitrite reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134540. [PMID: 38733787 DOI: 10.1016/j.jhazmat.2024.134540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Cyanide is a typical toxic reducing agent prevailing in wastewater with a well-defined chemical mechanism, whereas its exploitation as an electron donor by microorganisms is currently understudied. Given that conventional denitrification requires additional electron donors, the cyanide and nitrogen can be eliminated simultaneously if the reducing HCN/CN- and its complexes are used as inorganic electron donors. Hence, this paper proposes anaerobic cyanides oxidation for nitrite reduction, whereby the biological toxicity and activity of cyanides are modulated by bimetallics. Performance tests illustrated that low toxicity equivalents of iron-copper composite cyanides provided higher denitrification loads with the release of cyanide ions and electrons from the complex structure by the bimetal. Both isotopic labeling and Density Functional Theory (DFT) demonstrated that CN--N supplied electrons for nitrite reduction. The superposition of chemical processes reduces the biotoxicity and enhances the biological activity of cyanides in the CN-/Fe3+/Cu2+/NO2- coexistence system, including complex detoxification of CN- by Fe3+, CN- release by Cu2+ from [Fe(CN)6]3-, and NO release by nitrite substitution of -CN groups. Cyanide is the smallest structural unit of C/N-containing compounds and serves as a probe to extend the electron-donating principle of anaerobic cyanides oxidation to more electron-donor microbial utilization.
Collapse
Affiliation(s)
- Acong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Haoling Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, PR China.
| | - Zhaohui Song
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Yao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Heng Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Zijun Pang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Zhi Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Yulun Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Xianghong Guan
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Hua Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China; School of Environment, South China Normal University, Guangzhou, Guangdong 510006, PR China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
5
|
Xu C, Feng Y, Li H, Liu M, Yao Y, Li Y. Enhanced degradation of enrofloxacin in mariculture wastewater based on marine bacteria and microbial carrier. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134555. [PMID: 38728864 DOI: 10.1016/j.jhazmat.2024.134555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/28/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
This study aimed to isolate marine bacteria to investigate their stress response, inhibition mechanisms, and degradation processes under high-load conditions of salinity and enrofloxacin (ENR). The results demonstrated that marine bacteria exhibited efficient pollutant removal efficiency even under high ENR stress (up to 10 mg/L), with chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN) and ENR removal efficiencies reaching approximately 88%, 83%, 61%, and 73%, respectively. The predominant families of marine bacteria were Bacillaceae (50.46%), Alcanivoracaceae (32.30%), and Rhodobacteraceae (13.36%). They responded to ENR removal by altering cell membrane properties, stimulating the activity of xenobiotic-metabolizing enzymes and antioxidant systems, and mitigating ENR stress through the secretion of extracellular polymeric substance (EPS). The marine bacteria exhibited robust adaptability to environmental factors and effective detoxification of ENR, simultaneously removing carbon, nitrogen, phosphorus, and antibiotics from the wastewater. The attapulgite carrier enhanced the bacteria's resistance to the environment. When treating actual mariculture wastewater, the removal efficiencies of COD and TN exceeded 80%, TP removal efficiency exceeded 90%, and ENR removal efficiency approached 100%, significantly higher than reported values in similar salinity reactors. Combining the constructed physical and mathematical models of tolerant bacterial, this study will promote the practical implementation of marine bacterial-based biotechnologies in high-loading saline wastewater treatment.
Collapse
Affiliation(s)
- Chenglong Xu
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Feng
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Haoran Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mengyao Liu
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yisong Yao
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yunhao Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Chu G, Qi W, Chen W, Zhang Y, Gao S, Wang Q, Gao C, Gao M. Metagenomic insights into the nitrogen metabolism, antioxidant pathway, and antibiotic resistance genes of activated sludge from a sequencing batch reactor under tetracycline stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132788. [PMID: 37856954 DOI: 10.1016/j.jhazmat.2023.132788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Tetracycline is prevalent in wastewater treatment plants and poses a potential threat to biological nitrogen removal under long-term exposure. In the present study, the influence of different tetracycline concentrations on the nitrogen removal, bioactivity response, and the spread of antibiotic resistance genes (ARGs) was assessed in sequencing batch reactor (SBR). The nitrogen removal efficiency, nitrification rate, and denitrification rate and their corresponding enzymatic activities gradually decreased with an increase in tetracycline concentration from 0.5 to 15 mg/L. The remarkable toxicity induced by tetracycline led to a significant increase in the peroxidation and the response of antioxidant system, as evidenced by strengthened antioxidant enzymatic activity and abundant genes (SOD12, katG, PXDN, gpx, and apx). Tetracycline addition significantly inhibited the ammonia-oxidizing bacterium Nitrosomonas and functional genes (amoA, amoB, and amoC). The presence of tetracycline decreased the abundance of citrate synthase and genes (CS, IDH3, and acnA) and interfered with carbon source metabolism, leading to impaired bioactivity and treatment performance. In addition, the presence of tetracycline induces diversity and differences in ARGs. The results provide reliable basic data for a deeper understanding of the effects of tetracycline on the nitrogen removal performance of bioreactors and provide a theoretical basis to build a promising strategy for relieving antibiotic-caused process fluctuations.
Collapse
Affiliation(s)
- Guangyu Chu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Weiyi Qi
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wenzheng Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuqiao Zhang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shijiang Gao
- Logistics Support Division, Ocean University of China, Qingdao 266100, China.
| | - Qianzhi Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chang Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
7
|
Jin Y, Ding J, Zhan W, Du J, Wang G, Pang J, Ren N, Yang S. Effect of dissolved oxygen concentration on performance and mechanism of simultaneous nitrification and denitrification in integrated fixed-film activated sludge sequencing batch reactors. BIORESOURCE TECHNOLOGY 2023; 387:129616. [PMID: 37544541 DOI: 10.1016/j.biortech.2023.129616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Integrated fixed-film activated sludge (IFAS) is a superior system for achieving simultaneous nitrification and denitrification (SND), however, the impact of dissolved oxygen (DO) has not been fully elucidated. Therefore, this study investigated the effect of DO concentration on performance and mechanism of SND in IFAS system. Results showed that IFAS outperformed control systems and achieved optimal SND performance at a DO concentration of 0.5 mg/L, with an SND efficiency of 88.51% and total nitrogen removal efficiency of 82.78%. Typical cycles analysis demonstrated limited-DO promoted SND performance. Further analysis implied biofilms exhibited high biomass and denitrification activity with decreasing DO. Microbial community analysis revealed low DO concentrations were responsible for abundant functional groups and genes associated with SND and promoted unconventional nitrogen removal pathways. Moreover, co-occurrence network analysis elucidated microbial interactions, responses to DO, and keystone genera. This study helps understanding the roles of DO for enhanced SND in IFAS.
Collapse
Affiliation(s)
- Yaruo Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zhan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juanshan Du
- KENTECH Institute of Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, South Korea
| | - Guangyuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiwei Pang
- China Energy Conservation and Environmental Protection Group, Beijing 100089, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shanshan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Jin Y, Zhan W, Wu R, Han Y, Yang S, Ding J, Ren N. Insight into the roles of microalgae on simultaneous nitrification and denitrification in microalgal-bacterial sequencing batch reactors: Nitrogen removal, extracellular polymeric substances, and microbial communities. BIORESOURCE TECHNOLOGY 2023; 379:129038. [PMID: 37037336 DOI: 10.1016/j.biortech.2023.129038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
This study explored the influence and mechanism of microalgae on simultaneous nitrification and denitrification (SND) in microalgal-bacterial sequencing batch reactors (MB-SBR). It particularly focused on nitrogen transformation in extracellular polymeric substances (EPS) and functional groups associated with nitrogen removal. The results showed that MB-SBR achieved more optimal performance than control, with an SND efficiency of 68.01% and total nitrogen removal efficiency of 66.74%. Further analyses revealed that microalgae changed compositions and properties of EPS by increasing EPS contents and improving transfer, conversion, and storage capacity of nitrogen in EPS. Microbial community analysis demonstrated that microalgae promoted the enrichment of functional groups and genes related to SND and introduced diverse nitrogen removal pathways. Moreover, co-occurrence network analysis elucidated the interactions between communities of bacteria and microalgae and the promotion of SND by microalgae as keystone connectors in the MB-SBR. This study provides insights into the roles of microalgae for enhanced SND.
Collapse
Affiliation(s)
- Yaruo Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zhan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Rui Wu
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China; Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin 150090, China
| | - Yahong Han
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin 150090, China
| | - Shanshan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
9
|
James SN, Sengar A, Vijayanandan A. Investigating the biodegradability of iodinated X-ray contrast media in simultaneous nitrification and denitrification system. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131196. [PMID: 36940530 DOI: 10.1016/j.jhazmat.2023.131196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
The present study investigated the biodegradation of three iodinated X-ray contrast media (ICM), namely, iopamidol, iohexol, and iopromide, in simultaneous nitrification-denitrification (SND) system maintained in a sequencing batch reactor (SBR). The results showed that variable aeration patterns (anoxic-aerobic-anoxic) and micro-aerobic condition were most effective in the biotransformation of ICM while achieving organic carbon and nitrogen removal. The highest removal efficiencies of iopamidol, iohexol, and iopromide were 48.24%, 47.75%, and 57.46%, respectively, in micro-aerobic condition. Iopamidol was highly resistant to biodegradation and possessed the lowest Kbio value, followed by iohexol and iopromide, regardless of operating conditions. The removal of iopamidol and iopromide was affected by the inhibition of nitrifiers. The transformation products after hydroxylation, dehydrogenation, and deiodination of ICM were detected in the treated effluent. Due to the addition of ICM, the abundance of denitrifier genera Rhodobacter and Unclassified Comamonadaceae increased, and the abundance of class TM7-3 decreased. The presence of ICM affected the microbial dynamics, and the diversity of microbes in SND resulted in improving the biodegradability of the compounds.
Collapse
Affiliation(s)
- Susan N James
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
10
|
Li Y, Liu S, Lu L, Wang J, Huang G, Chen F, Zuo JE. Non-uniform dissolved oxygen distribution and high sludge concentration enhance simultaneous nitrification and denitrification in a novel air-lifting reactor for municipal wastewater treatment: A pilot-scale study. BIORESOURCE TECHNOLOGY 2023:129306. [PMID: 37328012 DOI: 10.1016/j.biortech.2023.129306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Achieving simultaneous carbon and nitrogen removal with sludge-liquid separation in a single reactor offers a solution to land shortages and improves treatment efficiency in municipal wastewater treatment plants of megacities. This study proposes a novel air-lifting continuous-flow reactor configuration with an alternative-aeration strategy that creates multi-functional zones for anoxic, oxic, and settlement processes. The optimal operational conditions for the reactor include a long anoxic hydraulic retention time, low dissolved oxygen (DO) in the oxic zone, and no specific reflux for external nitrifying liquid, which exhibit a high nitrogen removal efficiency of over 90% in treating real sewage with C/N < 4 in the pilot-scale study. Results show that a high sludge concentration and a low DO concentration facilitate simultaneous nitrification and denitrification, and a well mixing of sludge and substrate in different reaction zones promotes nitrogen removal. The long-term operation enriches functional microbes for carbon storage and nutrient removal.
Collapse
Affiliation(s)
- Yun Li
- Qingyan Environmental Technology Co. Ltd, Shenzhen 51800, China; Research Centre of Environmental Microbial Resource Development and Application Engineering, Research Institute of Tsinghua University in Shenzhen, Guangdong 518000, China.
| | - Shujie Liu
- Qingyan Environmental Technology Co. Ltd, Shenzhen 51800, China; State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Lanlan Lu
- Qingyan Environmental Technology Co. Ltd, Shenzhen 51800, China
| | - Jinghou Wang
- Qingyan Environmental Technology Co. Ltd, Shenzhen 51800, China
| | - Guangrong Huang
- Qingyan Environmental Technology Co. Ltd, Shenzhen 51800, China
| | - Fuming Chen
- Qingyan Environmental Technology Co. Ltd, Shenzhen 51800, China
| | - Jian-E Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
11
|
Yao K, Huang X, Dong W, Wang F, Liu X, Yan Y, Qu Y, Fu Y. Changes of nitrogen and phosphorus removal pattern caused by alternating aerobic/anoxia from the perspective of microbial characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68863-68876. [PMID: 37129825 DOI: 10.1007/s11356-023-27302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
The purpose of this study was to compare the impact of different numbers of alternating aerobic/anoxic (A/O) cycles on pollutant removal. Three sequential batch reactors (SBRs) with varying numbers of alternating A/O cycles were established. Under the tertiary anoxic operating conditions, the removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) were 88.73%, 89.56%, 72.15%, and 77.61%, respectively. Besides, alternating A/O affected the dominant microbial community relative abundance (Proteobacteria and Bacteroidetes) and increased microbial richness and diversity. It also increased the relative abundance of aerobic denitrifying, heterotrophic nitrifying, and denitrifying phosphorus removal bacteria to change N and P removal patterns. Furthermore, the abundance of carbohydrate metabolism and amino acid metabolism was improved by alternating A/O to improve organic matter and TN removal.
Collapse
Affiliation(s)
- Kai Yao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
- Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wenyi Dong
- Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Fupeng Wang
- Northeast China Municipal Engineering Design and Research Institute Co. Ltd, Jilin, 130021, China
| | - Xueyong Liu
- Northeast China Municipal Engineering Design and Research Institute Co. Ltd, Jilin, 130021, China
- Urban and Rural Water Environment Technology R&D Center, China Communications Construction Co. Ltd, Jilin, 130021, China
| | - Yu Yan
- Northeast China Municipal Engineering Design and Research Institute Co. Ltd, Jilin, 130021, China
- Urban and Rural Water Environment Technology R&D Center, China Communications Construction Co. Ltd, Jilin, 130021, China
| | - Yanhui Qu
- China Urban and Rural Holdings Group Co. Ltd, Beijing, 100029, China
| | - Yicheng Fu
- State Key Laboratory of Simulation and Regulation of River Basin Water Cycle, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| |
Collapse
|
12
|
James SN, Vijayanandan A. Recent advances in simultaneous nitrification and denitrification for nitrogen and micropollutant removal: a review. Biodegradation 2023; 34:103-123. [PMID: 36899211 DOI: 10.1007/s10532-023-10015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/06/2023] [Indexed: 03/12/2023]
Abstract
Simultaneous Nitrification and Denitrification (SND) is a promising process for biological nitrogen removal. Compared to conventional nitrogen removal processes, SND is cost-effective due to the decreased structural footprint and low oxygen and energy requirements. This critical review summarizes the current knowledge on SND related to fundamentals, mechanisms, and influence factors. The creation of stable aerobic and anoxic conditions within the flocs, as well as the optimization of dissolved oxygen (DO), are the most significant challenges in SND. Innovative reactor configurations coupled with diversified microbial communities have achieved significant carbon and nitrogen reduction from wastewater. In addition, the review also presents the recent advances in SND for removing micropollutants. The micropollutants are exposed to various enzymes due to the microaerobic and diverse redox conditions present in the SND system, which would eventually enhance biotransformation. This review presents SND as a potential biological treatment process for carbon, nitrogen, and micropollutant removal from wastewater.
Collapse
Affiliation(s)
- Susan N James
- Department of Civil Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology, Delhi, 110016, India.
| |
Collapse
|
13
|
Niu X, Bi X, Gu R, Yin Z, Yang B, Liu C. Modification of a plant-scale semi-centralized wastewater treatment system to enhance nitrogen and phosphorus removal from black water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2005-2019. [PMID: 37119169 DOI: 10.2166/wst.2023.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Owing to the low ratio of chemical oxygen demand to total nitrogen (SCOD/TN), effective removal of nutrient pollutants from black water is difficult. In this study, to enhance nitrogen and phosphorus removal from such wastewater, a series of operational modification strategies was investigated and applied to a plant-scale semi-centralized system used for black water treatment. The results showed that 21 mg Fe3+/L was the optimal dosage for the chemical-enhanced pretreatment process, achieving average removal efficiencies of 51.1 and 74.1% for organics and phosphorus, respectively, with a slight enhancement in nitrogen removal by 2.3%. However, nitrogen and phosphorus removal could be further enhanced to 88 and 96%, by the addition of carbon sources in the post-anoxic zone of the reversed anaerobic-anoxic-aerobic process. Contrastingly, neither the addition of carbon sources in the pre-anoxic zone nor the prolongation of the time for pre-denitrification could significantly improve the nitrogen and phosphorus removal efficiencies. Furthermore, reducing the aeration intensity promoted simultaneous nitrification and denitrification in aerobic reactors, thereby making it a potential energy-saving method for system operation.
Collapse
Affiliation(s)
- Xinyuan Niu
- Qingdao University of Technology, 777 Jialingjiang East Road, Huangdao District, Qingdao 266520, China E-mail:
| | - Xuejun Bi
- Qingdao University of Technology, 777 Jialingjiang East Road, Huangdao District, Qingdao 266520, China E-mail:
| | - Ruihuan Gu
- Qingdao Water Group Co., Ltd, 22 Ningde Road, Laoshan District, Qingdao 266071, China
| | - Zhixuan Yin
- Qingdao University of Technology, 777 Jialingjiang East Road, Huangdao District, Qingdao 266520, China E-mail:
| | - Benliang Yang
- Qingdao University of Technology, 777 Jialingjiang East Road, Huangdao District, Qingdao 266520, China E-mail:
| | - Changqing Liu
- Qingdao University of Technology, 777 Jialingjiang East Road, Huangdao District, Qingdao 266520, China E-mail:
| |
Collapse
|
14
|
Lin BL, Lee DJ, Mannina G, Guo W. Advanced biological technologies for removal and recovery of reactive nitrogen (Nr) from wastewaters. BIORESOURCE TECHNOLOGY 2023; 368:128327. [PMID: 36396034 DOI: 10.1016/j.biortech.2022.128327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Bin-Le Lin
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| | - Giorgio Mannina
- Engineering Department - Palermo University, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney 2007, NWS, Australia
| |
Collapse
|