1
|
Du Z, Bai S, Qian J, Zhan P, Hu F, Peng X. Iron-carbon enhanced constructed wetland microbial fuel cells for tetracycline wastewater treatment: Efficacy, power generation, and the role of iron-carbon. BIORESOURCE TECHNOLOGY 2025; 430:132578. [PMID: 40268101 DOI: 10.1016/j.biortech.2025.132578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Tetracycline (TC) antibiotics wastewater is a serious threat to human health and environment. In this study, four groups of laboratory-scale constructed wetlands (CWs) with different configurations were constructed to evaluate the removal efficiency of iron-carbon (Ic) coupled constructed wetland microbial fuel cells (CW-MFC) system for different pollutants removal and bioelectricity production. The results showed that the addition of Ic significantly promoted the removal of contaminants. The maximum removal rates of COD, TN, NH4+-N, and TP were 86.13 %, 81.60 %, 79.07 %, and 97.35 %, respectively. In particular, the removal rates of TC reached 100 %. 3D-EEM analysis further confirmed the role of Ic in promoting organic degradation. The Ic-CW-MFC system also showed superiority in power generation performance with peak power density of 7.90 mW/m2 (internal resistance is 10 Ω), 88.07 % higher than the traditional CW-MFC, while the internal resistance was 68.21 % lower. Therefore, when Ic is used as the substrate of CW-MFC system, its decontamination and electricity generation performance is the best. Analysis of RDA was used to elucidate the relationship of four CWs, dominant strains and environmental factors (pH, ORP and DO). The performance of traditional CWs decreased significantly after TC addition (5-20 mg/L), but Ic-CW-MFC could effectively alleviate the inhibition effect caused by high-concentration TC wastewater. The working mechanism of Ic-CW-MFC in TC wastewater was further analyzed through typical cycle experiment and characterization. The results showed that Ic-CW-MFC is an efficient and economical wastewater treatment technology, which has great potential application value in the treatment of wastewater containing TC.
Collapse
Affiliation(s)
- Zhiyuan Du
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China
| | - Sai Bai
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China
| | - Jin Qian
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China.
| | - Peng Zhan
- Jiangxi Water Resources Institute, Nanchang 330013, PR China
| | - Fengping Hu
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China
| | - Xiaoming Peng
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China.
| |
Collapse
|
2
|
Li XZ, Wang T, Yang T, Li X, Wu LW, Zhuang LL, Zhang J. The substrate configuration influences pollutant removal in constructed wetlands: From the aspects of submerged status of substrate and carbon-felt distribution. WATER RESEARCH 2025; 278:123396. [PMID: 40043578 DOI: 10.1016/j.watres.2025.123396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/14/2025]
Abstract
Redox regulation dominates the pollutant removal in constructed wetlands (CWs). To enhance efficient and cost-effective nitrogen removal, this study intended to build an unsaturated zone and add carbon-felt material for electron donor/acceptor adjustment. The unsaturated zone heights (0, 10, 20 cm) and carbon-felt distribution patterns (evenly scattered (CWSE), continuously linked (CWL), and head-tail linked like microbial fuel cells (CWMFC)) were simultaneously adjusted. Moreover, their effects and underlying microbial mechanisms on water purification were investigated. Results indicated that CWs with a 20 cm unsaturated zone achieved over 99 % ammonia nitrogen removal. CWSE facilitated optimal pollutant-microbe contact, enabling efficient in-situ electron utilization for 64.27 % total nitrogen removal through simultaneous nitrification-denitrification and anammox. In CWL, continuous carbon-felt distribution allowed efficient electron transport at a relatively macro-area and enhanced electron consumption by oxygen at the surface, leading to superior ammonia oxidation (82.97 %) in the middle area of CWL. Conversely, CWMFC facilitated direct electron transfer through the whole CW, enriched Geobacter at the top and Vibrio at the bottom, achieving 84.23 % total nitrogen removal through nitrification-denitrification under high oxygenation. This study elucidated microbial community niche differentiation in CWs mediated by carbon-felt electron transport and proposed optimal application scenarios for different carbon-felt configurations.
Collapse
Affiliation(s)
- Xiang-Zheng Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Tong Wang
- School of Ecological & Environmental Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xue Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Lin-Wei Wu
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong 250014, China
| |
Collapse
|
3
|
Ye Y, Yan X, Jiang Y, Wang S, Liu D, Ren Y, Li D, Ngo HH, Guo W, Cheng D, Jiang W. Optimized feeding schemes of heterotrophic anodic denitrification coupled with cathodic phosphate recovery from wastewater using a microbial fuel cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 981:179590. [PMID: 40328065 DOI: 10.1016/j.scitotenv.2025.179590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/13/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
Enhanced water quality standards and increasing resource scarcity have prompted extensive research into low-cost nitrogen removal and phosphate recovery from wastewater. Microbial fuel cells (MFCs) offer a viable solution by simultaneously removing nitrogen, recovering phosphorus, and generating electrical energy. This study employed MFCs to achieve simultaneous nitrogen removal and phosphorus recovery, investigating the impact of different feeding schemes. The experimental results indicated that replacing the entire anode chamber solution and recycling the anode effluent to the cathode chamber effectively prevented the accumulation of nitrifying bacteria while achieving the highest pollutant removal performance. Under closed circuit conditions, the system consistently maintained low nitrite concentrations, achieving an average nitrate removal efficiency of 68.09 ± 1.86 % and phosphate recovery efficiency of 83.46 ± 5.30 %. Furthermore, this feeding scheme facilitated microbial growth and reproduction while also improving operational convenience. The study utilized metagenomics and other technologies to comprehensively analyze the system's operation mechanism and reasons for its excellent performance.
Collapse
Affiliation(s)
- Yuanyao Ye
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Xueyi Yan
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Yuanshou Jiang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Songlin Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Dongqi Liu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Yongzheng Ren
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Daosheng Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, PR China
| | - Wei Jiang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
4
|
Liu Y, Zheng M, Lv L, Chen G, Wang C, Hu Z, Feng J, Xie B, Han H, Wang W. Reversing inhibition to promotion in phenol-ammonium metabolism via algal-microbial fuel cell: Mechanisms of phenol-ammonium interaction and synergistic removal. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138417. [PMID: 40311522 DOI: 10.1016/j.jhazmat.2025.138417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/19/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Addressing the challenge of metabolic inhibition between phenol and ammonium in coal gasification wastewater (CGW), this study introduced a novel algal-microbial fuel cell (AMFC). It combined the advantages of electroactive bacteria and Synechocystis to achieve synergistic metabolism, establishing a cooperative mechanism for pollutant separation and enhanced transformation to achieve the mutual promotion of phenol and ammonium removal. Remarkably, raising phenol to 1500 mg COD/L boosted ammonium removal by 31.51 % in AMFC, due to a consistently higher potential difference than the control, which enhanced extracellular electron transfer (EET) via conductive nanowire and drove ammonium migration. Similarly, elevating ammonium concentration to 150 mg/L resulted in an 11.79 % increase in phenol removal efficiency, driven by superior solution conductivity and EET, as well as more electron acceptors (oxygen) from the algal cathode. This system challenged the conventional understanding of the antagonistic relationship between phenol and ammonium. Under high phenol conditions, the electroactive bacteria Clostridium sensu stricto 1 and Acinetobacter, Perlucidibaca formed a synergistic metabolic network, whereas Zoogloea, Ideonella, and other phenol-degrading bacteria were significantly enriched in high ammonium environments. The AMFC represented a breakthrough in reversing the metabolic inhibition between phenol and ammonium, providing a novel and energy-efficient strategy for treating complex industrial wastewater.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China
| | - Mengqi Zheng
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China.
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guowei Chen
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China
| | - Chengye Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China
| | - Jingwei Feng
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China
| | - Binghan Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China.
| |
Collapse
|
5
|
Qian X, Huang J, Xv J, Yao J. Efficiently intensified nitrogen transformation in electrolysis-integrated constructed wetlands: Comparative performance and mechanism. BIORESOURCE TECHNOLOGY 2025; 429:132499. [PMID: 40199390 DOI: 10.1016/j.biortech.2025.132499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/23/2025] [Accepted: 04/05/2025] [Indexed: 04/10/2025]
Abstract
This study developed constructed wetlands (CWs) with direct current (DC) electrolysis and iron-carbon (IC) microelectrolysis. Ammonium removal was more significantly enhanced with IC by 12.7-27.3 %, while the promotion of DC only existed with lower voltage. DC electrolysis continuously promoted nitrate conversion by 5.7-13.3 % compared to the control. Total nitrogen removal was 75.0-92.7 % and 85.4-93.4 % with DC and IC electrolysis, respectively limited by ammonium and nitrite accumulation. Bioelectrolysis enriched nitrifying bacteria such as Ellin6067, Nitrospira, and Nitrosomonas. Moreover, IC stimulated hydrogenotrophic denitrifying bacteria (Paracoccus, Pseudomonas, and Dechloromonas) and up-regulated gene narG, narH, and narI, aligned with higher nitrate reductase activity. In contrast, DC caused higher abundance involved in electroautotrophic denitrifying bacteria (Thiobacillus) and genes of assimilatory nitrate and nitrite reduction (narB and nirA). Additionally, both electrolysis stimulated electron production and energy metabolism for nitrogen cycling. This work provided comparative methods to intensify nitrogen transformation in CW systems.
Collapse
Affiliation(s)
- Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Jin Xv
- Jiangxi Province Key Laboratory of Watershed Ecological Process and Information, Jiujiang 332005, China; School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Jiawei Yao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Ouyang B, Zhang Z, Chen F, Li F, Fu ML, Lan H, Yuan B. Energy production and denitrogenation performance by sludge biochar based constructed wetlands-microbial fuel cells system: Overcoming carbon constraints in water. WATER RESEARCH 2025; 273:123024. [PMID: 39733529 DOI: 10.1016/j.watres.2024.123024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
As freshwater demand grows globally, using reclaimed water in natural water bodies has become essential. Constructed wetlands (CWs) are widely used for advanced wastewater treatment due to their environmental benefits. However, low carbon/nitrogen (C/N) ratios in wastewater limit nitrogen removal, often leading to eutrophication. This study explores the use of sewage sludge biochar (SB) and activated carbon (AC) as electrodes in microbial fuel cell-constructed wetlands (MFC-CW) to enhance nitrogen removal and energy generation. Results indicated that the sludge biochar closed-circuit CW (MSBS-CW) achieved considerable total nitrogen removal (95.85 %) and maximum power density (9.05 mW/m²). Furthermore, high-throughput sequencing and functional gene analysis revealed substantial shifts in the microbial community within MSBS-CW, particularly in the electroactive bacteria (Geobacter), autotrophic denitrifying bacterium (Hydrogenophaga, Thiobacillus) and anaerobic ammonium oxidation bacteria (Candidatus_Brocadia). Electrochemical and material characterization showed that SB enhanced the cathode's electrochemical performance and the anode's biocompatibility, thereby improving denitrification and energy generation. This study demonstrates that sludge biochar is an effective low-cost electrode material for MFC-CW systems, offering a sustainable solution for nitrogen removal and energy production under carbon-constrained conditions.
Collapse
Affiliation(s)
- Boda Ouyang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Zhiyong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Fuzhi Chen
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Fei Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ming-Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China.
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China.
| |
Collapse
|
7
|
Xie L, Huang J, Zhu X, Yang F, Peng F, Pang Q, Jing Y, Tian L, Jin J, Hu G, Wang L. Simplification and simulation of evaluation process for low efficiency constructed wetlands based on principal component analysis and machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176873. [PMID: 39414032 DOI: 10.1016/j.scitotenv.2024.176873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
The existing performance evaluation process of constructed wetlands (CWs) is complex, with shortcomings in both simplification of method and construction of simulation model, especially for low-efficiency CWs (LECWs, with an average close-degree calculated by the entropy weight method being <0.6). This study presents a case study of LECWs in the Ningxia region (comprising 13 subsurface flow constructed wetlands (SSF CWs) and 7 surface flow constructed wetlands (SF CWs)), employs the entropy weight method (EWM) to construct an evaluation of CW operational efficiency, simplifies evaluation indicators through principal component analysis (PCA), develops two random forest (RF) models to validate the rationality of the simplified indicators, and establishes simulation models by logistic regression (LR). The results demonstrate that the evaluation indicators of CWs can be simplified to chemical oxygen demand (COD) and total nitrogen (TN), with no significant difference observed between the evaluation results and the original model (P < 0.05), thereby indicating reliability. Moreover, the simulation model performs well with R2 values for fitting SSF CWs and SF CWs exceeding 0.8. According to the simulated results of the model, the operational efficiency of LECWs is more significantly affected by the COD removal rates compared to the TN removal rates. In comparison to influent with 0 < COD/TN < 3 and 5 < COD/TN < 8, the operational efficiency of SSF CWs and SF CWs is optimal when COD/TN is between 3 and 5. These research findings may provide valuable support for streamlining evaluation processes and daily management for LECWs.
Collapse
Affiliation(s)
- Lei Xie
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Jingjie Huang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiang Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Fei Yang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Fuquan Peng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Beijing 100012, PR China
| | - Qingqing Pang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Beijing 100012, PR China
| | - Yuming Jing
- Shandong Huanke Environmental Engineering Co., Ltd., Jinan 250199, PR China
| | - Linfeng Tian
- Ecological Environment Monitoring Center of Ningxia Hui Autonomous Region, Yinchuan 750002, PR China
| | - Jianhua Jin
- Environmental Monitoring Station of Shizuishan, Shizuishan 753000, PR China
| | - Guirong Hu
- Environmental Monitoring Station of Shizuishan, Shizuishan 753000, PR China
| | - Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, Beijing 100012, PR China.
| |
Collapse
|
8
|
Guo F, Wang H, Wei X, Luo B, Song X. Baffled flow constructed wetland-microbial fuel cell coupling systems for combined secondary and tertiary wastewater treatment with simultaneous bioelectricity generation. BIORESOURCE TECHNOLOGY 2024; 412:131419. [PMID: 39233180 DOI: 10.1016/j.biortech.2024.131419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Baffled flow constructed wetland-microbial fuel cell (BFCW-MFC) coupling systems were constructed with baffles embedded in cathode chamber. The performance of BFCW-MFCs operated at different hydraulic retention times (HRTs) was evaluated. At the representative HRT of 48 h, embedding 1 or 2 baffles (i.e., BFCW-MFC1 and BFCW-MFC2) produced 32.9 % (29.5 mW/m3) and 53.2 % (34.0 mW/m3) more power density than control system (22.2 mW/m3), respectively. Comparable organics biodegradation efficiencies were observed in BFCW-MFCs at the same HRTs. BFCW-MFC1 and BFCW-MFC2 had higher ammonium and total nitrogen removal efficiency. All systems had decreased nitrogen removal performance as shortening HRT from 72 to 12 h. Multiple nitrogen removal processes were involved, including ammonium oxidation, anammox, and heterotrophic and autotrophic denitrification. The predominant bacteria on electrodes were identified for analyzing bioelectricity generation and wastewater treatment processes. Generally, simultaneous wastewater treatment and bioelectricity generation were obtained in BFCW-MFCs, and embedding 1 or 2 baffles was preferable.
Collapse
Affiliation(s)
- Fei Guo
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China.
| | - Hang Wang
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China
| | - Xin Wei
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China
| | - Benfu Luo
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China
| | - Xiaoming Song
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
9
|
Shi X, Liang Y, Wen G, Evlashin SA, Fedorov FS, Ma X, Feng Y, Zheng J, Wang Y, Shi J, Liu Y, Zhu W, Guo P, Kim BH. Review of cathodic electroactive bacteria: Species, properties, applications and electron transfer mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174332. [PMID: 38950630 DOI: 10.1016/j.scitotenv.2024.174332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Cathodic electroactive bacteria (C-EAB) which are capable of accepting electrons from solid electrodes provide fresh avenues for pollutant removal, biosensor design, and electrosynthesis. This review systematically summarized the burgeoning applications of the C-EAB over the past decade, including 1) removal of nitrate, aromatic derivatives, and metal ions; 2) biosensing based on biocathode; 3) electrosynthesis of CH4, H2, organic carbon, NH3, and protein. In addition, the mechanisms of electron transfer by the C-EAB are also classified and summarized. Extracellular electron transfer and interspecies electron transfer have been introduced, and the electron transport mechanism of typical C-EAB, such as Shewanella oneidensis MR-1, has been combed in detail. By bringing to light this cutting-edge area of the C-EAB, this review aims to stimulate more interest and research on not only exploring great potential applications of these electron-accepting bacteria, but also developing steady and scalable processes harnessing biocathodes.
Collapse
Affiliation(s)
- Xinxin Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yutong Liang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Stanislav A Evlashin
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, the territory of the Skolkovo Innovation Center, Bolshoy Boulevard, 30, p.1, Moscow 121205, Russia
| | - Fedor S Fedorov
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, the territory of the Skolkovo Innovation Center, Bolshoy Boulevard, 30, p.1, Moscow 121205, Russia
| | - Xinyue Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Junjie Zheng
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yixing Wang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Julian Shi
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Yang Liu
- Shaanxi Land Engineering Construction Group Co., Ltd, Xi'an 710061, China
| | - Weihuang Zhu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Pengfei Guo
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Byung Hong Kim
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China; Korea Institute of Science & Technology, Seongbug-ku, Seoul 02792, Republic of Korea
| |
Collapse
|
10
|
Xiong L, Ma R, Yin F, Fu C, Peng L, Liu Y, Lu X, Li C. Simulation and optimisation of magnetic and experimental study of magnetic field coupling constructed wetland. ENVIRONMENTAL TECHNOLOGY 2024; 45:5083-5103. [PMID: 37955936 DOI: 10.1080/09593330.2023.2283801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
This study developed a novel constructed wetland (CW) coupled with a magnetic field for treating domestic wastewater, and the magnetic field distribution was solved and optimised by the finite element method. Herein, we investigated the effects of optimising magnetic field optimisation and studied its impact on CW treatment performance and the responses of a microbial community. The optimisation results showed that the average magnetic field strength of the CW unit increases from 3 to 8 mT, and the proportion of areas with magnetic field strength greater than 5 mT also increases from 30% to 74%. The water quality analysis results showed that the removal of chemical oxygen demand (COD) and NH4+-N (p < 0.01) was significantly increased by the magnetic field (average 3 mT), increasing by 12.2% and 8.49%, respectively. Moreover, the removal of COD and NH4+-N (p < 0.01) was more significantly increased by M-VFCW(O) (average 8 mT), increasing by 15.58% and 49.1%, respectively. The magnetic field application shifted significantly the abundance of dominant bacteria in CWs. Relative abundance of dominant bacteria such as Proteobacteria (63.3%), Firmicutes (4.72%) and Actinobacteria (2.11%) that played an important role in organics removal and nitrification and denitrification-related bacteria such as Nitrospirae (1.48%) and Planctomycetes (9.58%) significantly promoted in M-VFCW(O). These results suggest that introducing a magnetic field into CWs may improve organics and nitrogen removal via the biological process, and the optimisation of the magnetic field was significant in enhancing the performance of VFCWs.
Collapse
Affiliation(s)
- Liechao Xiong
- School of Mechanical Engineering and Transportation, Southwest Forestry University, Kunming, People's Republic of China
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Rong Ma
- School of Mechanical Engineering and Transportation, Southwest Forestry University, Kunming, People's Republic of China
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Fajin Yin
- School of Mechanical Engineering and Transportation, Southwest Forestry University, Kunming, People's Republic of China
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Chuandong Fu
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Liping Peng
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Yungen Liu
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Xiuxiu Lu
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Chengrong Li
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| |
Collapse
|
11
|
Li C, Ling Y, Zhang Y, Wang H, Wang H, Yan G, Dong W, Chang Y, Duan L. Insight into the microbial community of denitrification process using different solid carbon sources: Not only bacteria. J Environ Sci (China) 2024; 144:87-99. [PMID: 38802241 DOI: 10.1016/j.jes.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 05/29/2024]
Abstract
There is a lack of understanding about the bacterial, fungal and archaeal communities' composition of solid-phase denitrification (SPD) systems. We investigated four SPD systems with different carbon sources by analyzing microbial gene sequences based on operational taxonomic unit (OTU) and amplicon sequence variant (ASV). The results showed that the corncob-polyvinyl alcohol sodium alginate-polycaprolactone (CPSP, 0.86±0.04 mg NO3--N/(g·day)) and corncob (0.85±0.06 mg NO3--N/(g·day)) had better denitrification efficiency than polycaprolactone (PCL, 0.29±0.11 mg NO3--N/(g·day)) and polyvinyl alcohol-sodium alginate (PVA-SA, 0.24±0.07 mg NO3--N/(g·day)). The bacterial, fungal and archaeal microbial composition was significantly different among carbon source types such as Proteobacteria in PCL (OTU: 83.72%, ASV: 82.49%) and Rozellomycota in PVA-SA (OTU: 71.99%, ASV: 81.30%). ASV methods can read more microbial units than that of OTU and exhibit higher alpha diversity and classify some species that had not been identified by OTU such as Nanoarchaeota phylum, unclassified_ f_ Xanthobacteraceae genus, etc., indicating ASV may be more conducive to understand SPD microbial communities. The co-occurring network showed some correlation between the bacteria fungi and archaea species, indicating different species may collaborate in SPD systems. Similar KEGG function prediction results were obtained in two bioinformatic methods generally and some fungi and archaea functions should not be ignored in SPD systems. These results may be beneficial for understanding microbial communities in SPD systems.
Collapse
Affiliation(s)
- Congyu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Huan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
12
|
Ai S, Chang C, Zhang H, Wang Z, Kang H, Bian D. Performance of micro-pressure double-cycle coupled membrane integrated bioreactor for the treatment of urban sewage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15525-15537. [PMID: 38296926 DOI: 10.1007/s11356-024-32164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
Based on the theory of nitrogen and phosphorus removal and technical requirements, a micro-pressure double-cycle bioreactor coupled with membrane components was used to treat municipal wastewater. The method realized the simultaneous removal of organic matter, nitrogen, and phosphorus in the same reactor and had the characteristics of membrane bioreactor process. Results showed that the average removal efficiency of COD, NH+4-N, TN, and TP were 93.74%, 95.1%, 71.85%, and 81.03%, respectively. During operation, Proteobacteria and Bacteroidetes were the main dominant bacteria, and they had complete nitrogen and phosphorus metabolic pathways. Owing to the low protein content in the mixture, the design of film placement in the micro-precipitation zone was conducive to alleviating the membrane pollution caused by the accumulation of protein, thereby improving the effluent quality and extending the service life of the membrane components.
Collapse
Affiliation(s)
- Shengshu Ai
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012, China
| | - Chunlin Chang
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012, China
| | - Haigang Zhang
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012, China
| | - Ziheng Wang
- Berlin Changchun High-Tech Wastewater Treatment Co. Ltd., 130000, Changchun, China
| | - Hua Kang
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012, China
| | - Dejun Bian
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun, 130012, China.
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
13
|
Ishaq A, Said MIM, Azman SB, Houmsi MR, Isah AS, Jagun ZT, Mohammad SJ, Bello AAD, Abubakar UA. The influence of various chemical oxygen demands on microbial fuel cells performance using leachate as a substrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32090-x. [PMID: 38285261 DOI: 10.1007/s11356-024-32090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
Microbial fuel cells (MFCs), hailed as a promising technology, hold the potential to combat various wastewater pollutants while simultaneously converting their chemical energy into electricity through biocatalysts. This study explores the applicability of a dual compartment MFC (DC-MFC) under varying conditions, targeting the removal of chemical oxygen demand (COD) from landfill leachate and electricity generation. In this setup, anaerobic sludge from a wastewater treatment plant serves as the inoculum in the anode compartment of the MFC, with a Nafion117 membrane acting as the separator between MFC units. The cathode compartments are filled with distilled water and continually aerated for 24 h to enhance air supply. The study assesses the MFC's performance across different COD concentrations, focusing on COD removal, power generation, and Coulombic efficiency. The findings reveal that COD removal efficiency is notably enhanced at higher concentrations of organic matter. Specifically, at a COD concentration of 3325.0 mg L-1, the MFC exhibited the highest COD removal efficiency (89%) and maximum power density (339.41 mWm-2), accompanied by a Coulombic efficiency of 25.5%. However, as the initial substrate concentration increased to 3825 mg L-1, the efficiency decreased to 72%, with a Coulombic efficiency of 13.56% and a power density of 262.34 mWm-2. Optical density levels increased due to bacterial growth at ambient temperature and neutral pH, reflecting the dynamic microbial response within the system.
Collapse
Affiliation(s)
- Aliyu Ishaq
- Department of Water & Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Bahru, Johor, Malaysia
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Kaduna, 1045, Zaria, Nigeria
| | - Mohd Ismid Mohd Said
- Department of Water & Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Bahru, Johor, Malaysia
| | - Shamila Binti Azman
- Department of Water & Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Bahru, Johor, Malaysia
| | - Mohammed Rajab Houmsi
- New Era and Development in Civil Engineering Research Group, Scientific Research Center, AlAyen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Abubakar Sadiq Isah
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Kaduna, 1045, Zaria, Nigeria
| | - Zainab Toyin Jagun
- Department of Real Estate, School of Built Environment Engineering And Computing, Leeds Beckett University, City Campus, Leeds, UK.
| | - Shamsuddeen Jumande Mohammad
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Kaduna, 1045, Zaria, Nigeria
| | - Al Amin Danladi Bello
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Kaduna, 1045, Zaria, Nigeria
| | - Umar Alfa Abubakar
- School of Engineering, Technology, and Design, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent, CT1 1QU, UK
| |
Collapse
|
14
|
Xu N, Guo J, Huang C, Li H, Hou Y, Han Y, Song Y, Zhang D. Effect of ibuprofen (IBU) on the sulfur-based and calcined pyrite-based autotrophic denitrification (SCPAD) systems with two filling modes: Performance and toxic response mechanism. ENVIRONMENTAL RESEARCH 2023; 239:117251. [PMID: 37783323 DOI: 10.1016/j.envres.2023.117251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
To investigate the effect of ibuprofen (IBU) on the sulfur-based and calcined pyrite-based autotrophic denitrification (SCPAD) systems, two individual reactors with the layered filling (L-SCPAD) and mixed filling (M-SCPAD) systems were established via sulfur and calcined pyrite. Effluent NO3--N concentration of the L-SCPAD and M-SCPAD systems was first increased to 6.44, 0.93 mg/L under 0.5 mg/L IBU exposure and gradually decreased to 1.66 mg/L, 0 mg/L under 4.0 mg/L IBU exposure, indicating that NO3--N removal performance of the M-SCPAD system was better than that of the L-SCPAD system. The variation of extracellular polymeric substances (EPS) characteristics demonstrated that more EPS was secreted in the M-SCPAD system compared to the L-SCPAD system, which contributed to forming a more stable biofilm structure and protecting microorganisms against the toxicity of IBU in the M-SCPAD system. Moreover, the increased electron transfer impedance and decreased cytochrome c implied that IBU inhibited the electron transfer efficiency of the L-SCPAD and M-SCPAD systems. The decreased adenosine triphosphate (ATP) and electron transfer system activity (ETSA) content showed that IBU inhibited metabolic activity, but the M-SCPAD system exhibited higher metabolic activity compared to the L-SCPAD system. In addition, the analysis of the bacterial community indicated a more stable abundance of nitrogen removal function bacteria (Bacillus) in the M-SCPAD system compared to the L-SCPAD system, which was conducive to maintaining a stable denitrification performance. The toxic response mechanism based on the biogeobattery effect was proposed in the SCPAD systems under IBU exposure. This study provided an important reference for the long-term toxic effect of IBU on the SCPAD systems.
Collapse
Affiliation(s)
- Nengyao Xu
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China; School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, Zhejiang, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China.
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Yi Han
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China
| | - Daohong Zhang
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China
| |
Collapse
|
15
|
Frank J, Zhang X, Marcellin E, Yuan Z, Hu S. Salinity effect on an anaerobic methane- and ammonium-oxidising consortium: Shifts in activity, morphology, osmoregulation and syntrophic relationship. WATER RESEARCH 2023; 242:120090. [PMID: 37331229 DOI: 10.1016/j.watres.2023.120090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
Nitrate-dependent anaerobic methane oxidation (AOM) is a microbial process of both ecological significance for global methane mitigation and application potential for wastewater treatment. It is mediated by organisms belonging to the archaeal family 'Candidatus Methanoperedenaceae', which have so far mainly been found in freshwater environments. Their potential distribution in saline environments and their physiological responses to salinity variation were still poorly understood. In this study, the responses of the freshwater 'Candidatus Methanoperedens nitroreducens'-dominated consortium to different salinities were investigated using short- and long-term setups. Short-term exposure to salt stress significantly affected nitrate reduction and methane oxidation activities over the tested concentration range of 15-200‰ NaCl, and 'Ca. M. nitroreducens' showed the higher tolerance to high salinity stress than its partner of anammox bacteria. At high salinity concentration, near marine conditions of 37‰, the target organism 'Ca. M. nitroreducens' showed stabilized nitrate reduction activity of 208.5 µmol day-1 gCDW-1 in long-term bioreactors over 300 days, in comparison to 362.9 and 334.3 µmol day-1 gCDW-1 under low-salinity conditions (1.7‰ NaCl) and control conditions (∼15‰ NaCl). Different partners of 'Ca. M. nitroreducens' evolved in the consortia with three different salinity conditions, suggesting the different syntrophic mechanisms shaped by changes in salinity. A new syntrophic relationship between 'Ca. M. nitroreducens' and Fimicutes and/or Chloroflexi denitrifying populations was identified under the marine salinity condition. Metaproteomic analysis shows that the salinity changes lead to higher expression of response regulators and selective ion (Na+/H+) channeling proteins that can regulate the osmotic pressure between the cell and its environment. The reverse methanogenesis pathway was, however, not impacted. The finding of this study has important implications for the ecological distribution of the nitrate-dependent AOM process in marine environments and the potential of this biotechnological process for the treatment of high-salinity industrial wastewater.
Collapse
Affiliation(s)
- Joshua Frank
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
16
|
Li Z, Qiu Y, Yu Y, Ji Y, Li H, Liao M, Li D, Liang D, Liu G, Feng Y. Long-term operation of cathode-enhanced ecological floating bed coupled with microbial electrochemical system for urban surface water remediation: From lab-scale research to engineering application. WATER RESEARCH 2023; 237:119967. [PMID: 37104934 DOI: 10.1016/j.watres.2023.119967] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/27/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023]
Abstract
Ecological floating bed coupled with microbial electrochemical system (ECOFB-MES) has great application potential in micro-polluted water remediation yet limited by low electron transfer efficiency on the microbial/electrode interface. Here, an innovative cathode-enhanced EOCFB-MES was constructed with nano-Fe3O4 modification and applied for in-situ remediation both at lab scale (6 L, 62-day operation) and demonstration scale (2300 m2, 1-year operation). The cathode-enhanced ECOFB-MES exhibited superior removal in TOC (81.43 ± 2.05%), TN (85.12% ± 1.46%) and TP (59.80 ± 2.27%), much better than those of original ECOFB-MES and anode-enhanced ECOFB-MES in the laboratory test. Meanwhile, cathode-enhanced ECOFB-MES boosted current output by 33% than that of original ECOFB-MES, which made a great contribution to the improvement of ectopic electronic compensation for pollutant decontamination. Notably, cathode-enhanced ECOFB-MES presented high efficiency, stability and durability in the demonstration test, and fulfilled the average concentration of COD (9.5 ± 2.81 mg/L), TN (1.00 ± 0.21 mg/L) and TP (0.10 ± 0.04 mg/L) of effluent water to meet the Grade III (GB 3838-2002) with stable operation stage. Based on the KOSIM calculation, the removal loads of cathode-enhanced ECOFB-MES in carbon, nitrogen and phosphorus could reach 37.14 g COD/(d·m2), 2.62 g TN/(d·m2) and 0.55 g TP/(d·m2), respectively. According to the analysis of microbial communities and functional genes, the cathode modified by Fe3O4 made a sensible enrichment in electroactive bacteria (EAB) and nitrogen-converting bacteria (NCB) as well as facilitated the functional genes expression in electron transfer and nitrogen metabolism, resulting in the synergistic removal of carbon in sediment and nitrite in water. This study provided a brandnew technique reference for in-situ remediation of surface water in practical application.
Collapse
Affiliation(s)
- Zeng Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Ye Qiu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Yanling Yu
- School of Chemistry & Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yunlong Ji
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Henan Li
- North China Municipal Engineering Design & Research Institute Co., Ltd., No. 99 Qixiangtai Road, Hexi District, Tianjin 300000, PR China
| | - Menglong Liao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Da Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Dandan Liang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Guohong Liu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Yujie Feng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| |
Collapse
|
17
|
Tao M, Kong Y, Jing Z, Guan L, Jia Q, Shen Y, Hu M, Li YY. Acorus calamus recycled as an additional carbon source in a microbial fuel cell-constructed wetland for enhanced nitrogen removal. BIORESOURCE TECHNOLOGY 2023:129324. [PMID: 37315619 DOI: 10.1016/j.biortech.2023.129324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Acorus calamus was recycled as an additional carbon source in microbial fuel cell-constructed wetlands (MFC-CWs), for efficient nitrogen removal of low carbon wastewater. The pretreatment methods, adding positions, and nitrogen transformations were investigated. Results indicated that alkali-pretreatment cleaved the benzene rings in dominant released organics, producing chemical oxygen demand of 164.5 mg from per gram of A. calamus. Pretreated biomass addition in the anode of MFC-CW attained the maximum total nitrogen removal of 97.6% and power generation of 12.5 mW/m2, which were higher than those with biomass in the cathode (97.6% and 1.6 mW/m2, respectively). However, the duration of a cycle with biomass in the cathode (20-25 days) was longer than that in the anode (10-15 days). Microbial metabolisms related to organics degradation, nitrification, denitrification, and anammox were intensified after biomass recycling. This study provides a promising method to improve nitrogen removal and energy recovery in MFC-CWs.
Collapse
Affiliation(s)
- Mengni Tao
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Kong
- Nanjing Municipal Design and Research Institute Co., Ltd., Nanjing 210008, China
| | - Zhaoqian Jing
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Lin Guan
- Nanjing Municipal Design and Research Institute Co., Ltd., Nanjing 210008, China
| | - Qiusheng Jia
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiwei Shen
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meijia Hu
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
18
|
Wang Y, Wu F, Li X, Li C, Zhao Y, Gao Y, Liu J. Effects of plants and soil microorganisms on organic carbon and the relationship between carbon and nitrogen in constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62249-62261. [PMID: 36940031 DOI: 10.1007/s11356-023-26489-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/13/2023] [Indexed: 05/10/2023]
Abstract
Constructed wetland is an ideal place for studying the effects of plants and microorganisms on the nutrient cycling and carbon-nitrogen coupling in wetland for their clear background. This study examined both bare plots and others with plants (Phragmites australis or Typha angustifolia) in constructed wetlands and vegetation and soil samples were collected to investigate the effects of plants and soil microorganisms on carbon and nitrogen content. Results showed that the soil organic carbon content was high in plots with high plant biomass, and the increase of soil organic carbon driven by plant biomass was mainly from light fraction organic carbon (LFOC). Correlation analysis and redundancy analysis (RDA) suggested that plants play an important role in the cycle of carbon and nitrogen elements in constructed wetland soils, and that plant nitrogen components were key factors influencing wetland soil carbon and nitrogen. In addition, this study found that most of the main microbial taxa were significantly correlated with dissolved organic carbon (DOC), ammonium nitrogen (NH4+), and nitrate and nitrite nitrogen (NOx-) indicating that microorganisms might play an important role in regulating soil element cycles in constructed wetlands by affecting the metabolism of activated carbon and reactive nitrogen. This study has implications for increasing the carbon sink of constructed wetlands to mitigate the effects of global warming.
Collapse
Affiliation(s)
- Yan Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Fan Wu
- Jinan Environmental Research Academy, Jinan, 250000, China
| | - Xin Li
- Jinan Environmental Research Academy, Jinan, 250000, China
| | - Changchao Li
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yongkang Zhao
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yuxue Gao
- Jinan Environmental Research Academy, Jinan, 250000, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
19
|
Jiang LM, Zhang Z, Li Y, Xu J, Wang K, Ding X, He J, Qiu Z, Zhou H, Zhou Z. Under-loaded operation of an anaerobic-anoxic-aerobic system in dry and wet weather dynamics to prevent overflow pollution: Impacts on process performance and microbial community. BIORESOURCE TECHNOLOGY 2023; 376:128837. [PMID: 36898557 DOI: 10.1016/j.biortech.2023.128837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Effects of low hydraulic loading rate (HLR) in dry weather and high HLR in wet weather on pollutant removal, microbial community, and sludge properties of a full-scale wastewater treatment plant (WWTP) were extensively studied to explore the risk of under-loaded operation for overflow pollution control. Long-term low HLR operation had an insignificant effect on the pollutant removal performance of the full-scale WWTP, and the system could withstand high-load shocks in wet weather. Low HLR resulted in higher oxygen and nitrate uptake rate due to the storage mechanism under the alternating feast/famine condition, and lower nitrifying rate. Low HLR operation enlarged particle size, deteriorated floc aggregation and sludge settleability, and reduced sludge viscosity due to the overgrowth of filamentous bacteria and inhibition of floc-forming bacteria. The remarkable increase in Thuricola and the contract morphology of Vorticella in microfauna observation confirmed the risk of flocs disintegration in low HLR operation.
Collapse
Affiliation(s)
- Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhenjian Zhang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yunhui Li
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Jialei Xu
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Kun Wang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xinya Ding
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Junli He
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhan Qiu
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Hua Zhou
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| |
Collapse
|
20
|
Cao TND, Mukhtar H, Le LT, Tran DPH, Ngo MTT, Pham MDT, Nguyen TB, Vo TKQ, Bui XT. Roles of microalgae-based biofertilizer in sustainability of green agriculture and food-water-energy security nexus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161927. [PMID: 36736400 DOI: 10.1016/j.scitotenv.2023.161927] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
For years, agrochemical fertilizers have been used in agriculture for crop production. However, intensive utilization of chemical fertilizers is not an ecological and environmental choice since they are destroying soil health and causing an emerging threat to agricultural production on a global scale. Under the circumstances of the increasing utilization of chemical fertilizers, cultivating microalgae to produce biofertilizers would be a wise solution since desired environmental targets will be obtained including (1) replacing chemical fertilizer while improving crop yields and soil health; (2) reducing the harvest of non-renewable elements from limited natural resources for chemical fertilizers production, and (3) mitigating negative influences of climate change through CO2 capture through microalgae cultivation. Recent improvements in microalgae-derived-biofertilizer-applied agriculture will be summarized in this review article. At last, the recent challenges of applying biofertilizers will be discussed as well as the perspective regarding the concept of circular bio-economy and sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Thanh Ngoc-Dan Cao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Linh-Thy Le
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ward 11, District 5, Ho Chi Minh city 72714, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Phuc-Hanh Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan, ROC; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - My Thi Tra Ngo
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Mai-Duy-Thong Pham
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNUT.HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan, ROC
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tan Phu district, Ho Chi Minh city 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNUT.HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
21
|
Wang H, Wang X, Wang M, Zhang C, Li J, Xue M, Xia W, Xie H. Degradation and transformation of linear alkyl-benzene sulfonates (LAS) in integrated constructed wetland-microbial fuel cell systems. CHEMOSPHERE 2023; 321:138135. [PMID: 36796524 DOI: 10.1016/j.chemosphere.2023.138135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Linear alkylbenzene sulfonates (LAS) are the most commonly-used anionic surfactants in cleaning agents and detergents. Taking sodium dodecyl benzene sulfonate (SDBS) as the target LAS, this study investigated the degradation and transformation of LAS in integrated constructed wetland-microbial fuel cell (CW-MFC) systems. Results showed that, SDBS was able to improve the power output and reduce the internal resistance of CW-MFCs by reducing transmembrane transfer resistance of organics and electrons because of the amphiphilicity and solubilization, however, SDBS with relatively high concentration had a great potential to inhibit electricity generation and organics biodegradation of CW-MFCs because of the toxic effects on microorganisms. C atoms on alkyl group and O atoms on sulfonic acid group of SDBS had greater electronegativity and were prone to oxidation reaction. The biodegradation of SDBS in CW-MFCs was a process of alkyl chain degradation, desulfonation and benzene ring cleavage in sequence via ω, β and/or α-oxidations and radical attacks under the action of coenzymes and oxygen, in which 19 intermediates were produced, including four anaerobic degradation products (toluene, phenol, cyclohexanone and acetic acid). Especially, for the first time cyclohexanone was detected during the biodegradation of LAS. The bioaccumulation potential of SDBS was greatly reduced through the degradation by CW-MFCs, and thus the environmental risk of SDBS was effectively reduced.
Collapse
Affiliation(s)
- Huixin Wang
- Key Laboratory of Clean Energy Utilization and Pollutant Control in Tianjin, School of Energy and Environmental Engineering, Hebei University of Technology, China
| | - Xiaoou Wang
- Key Laboratory of Clean Energy Utilization and Pollutant Control in Tianjin, School of Energy and Environmental Engineering, Hebei University of Technology, China.
| | - Meiyan Wang
- Key Laboratory of Clean Energy Utilization and Pollutant Control in Tianjin, School of Energy and Environmental Engineering, Hebei University of Technology, China
| | - Changping Zhang
- Key Laboratory of Clean Energy Utilization and Pollutant Control in Tianjin, School of Energy and Environmental Engineering, Hebei University of Technology, China
| | - Jiayin Li
- Key Laboratory of Clean Energy Utilization and Pollutant Control in Tianjin, School of Energy and Environmental Engineering, Hebei University of Technology, China
| | - Ming Xue
- Key Laboratory of Clean Energy Utilization and Pollutant Control in Tianjin, School of Energy and Environmental Engineering, Hebei University of Technology, China
| | - Weiyi Xia
- Key Laboratory of Clean Energy Utilization and Pollutant Control in Tianjin, School of Energy and Environmental Engineering, Hebei University of Technology, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
22
|
Long Y, Ma Y, Wan J, Wang Y, Tang M, Fu H, Cao J. Denitrification efficiency, microbial communities and metabolic mechanisms of corn cob hydrolysate as denitrifying carbon source. ENVIRONMENTAL RESEARCH 2023; 221:115315. [PMID: 36657591 DOI: 10.1016/j.envres.2023.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
In this study, the denitrification efficacy of corn cob hydrolysate (CCH) was compared and analyzed with that of glucose and acetate to determine its feasibility as an additional carbon source, and its metabolic mechanism as a denitrification carbon source was investigated in depth. By constructing a denitrification reactor, it was found that the TN removal rate exceeded 97% and the effluent COD remained below 70 mg/L during the stable operation with CCH as the carbon source, and the denitrification effect was comparable to that of the glucose stage (GS) and the acetate stage (AS). The analysis of the microbial community showed that the dominant phylum was Proteobacteria and Bacteroidota, where the abundance of Bacteroidota in the hydrolysate stage (HS) (24.37%) was significantly higher than that of GS (4.89%) and AS (11.93%). And the analysis at the genus level showed the presence of a large number of genera of organic matter hydrolysis and acid production in HS that were almost absent in other stages, such as Paludibacter (12.83%), Gracilibacteria (4.27%), f__Prolixibacteraceae_Unclassified (2.94%). In addition, the higher fatty acid metabolism and lower sugar metabolism of HS during carbon metabolism were similar to the ratio of AS, suggesting that CCH was mainly fermented to acids and then involved in the tricarboxylic acid (TCA) cycle. During nitrogen metabolism, the high relative abundance of narG, nirS, and nosZ ensured the denitrification process. The results of this study were expected to provide a theoretical basis and data support for promoting denitrification from novel carbon sources.
Collapse
Affiliation(s)
- Yingping Long
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yongwen Ma
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China.
| | - Jinquan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China
| | - Yan Wang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China
| | - Min Tang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Hao Fu
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jianye Cao
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
23
|
Manikandan S, Vickram S, Sirohi R, Subbaiya R, Krishnan RY, Karmegam N, Sumathijones C, Rajagopal R, Chang SW, Ravindran B, Awasthi MK. Critical review of biochemical pathways to transformation of waste and biomass into bioenergy. BIORESOURCE TECHNOLOGY 2023; 372:128679. [PMID: 36706818 DOI: 10.1016/j.biortech.2023.128679] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biofuel or biogas have become the primary source of bio-energy, providing an alternative to conventionally used energy that can meet the growing energy demand for people all over the world while reducing greenhouse gas emissions. Enzyme hydrolysis in bioethanol production is a critical step in obtaining sugars fermented during the final fermentation process. More efficient enzymes are being researched to provide a more cost-effective technique during enzymatic hydrolysis. The exploitation of microbial catabolic biochemical reactions to produce electric energy can be used for complex renewable biomasses and organic wastes in microbial fuel cells. In hydrolysis methods, a variety of diverse enzyme strategies are used to promote efficient bioethanol production from various lignocellulosic biomasses like agricultural wastes, wood feedstocks, and sea algae. This paper investigates the most recent enzyme hydrolysis pathways, microbial fermentation, microbial fuel cells, and anaerobic digestion in the manufacture of bioethanol/bioenergy from lignocellulose biomass.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3#, Shaanxi, Yangling 712100, China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248001 Uttarakhand, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Radhakrishnan Yedhu Krishnan
- Department of Food Technology, Amal Jyothi College of Engineering, Kanjirappally, Kottayam 686 518, Kerala, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, India
| | - C Sumathijones
- Department of Pharmacology, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, India
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India; Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3#, Shaanxi, Yangling 712100, China.
| |
Collapse
|
24
|
Liu S, Wang Z, Feng X, Pyo SH. Refractory azo dye wastewater treatment by combined process of microbial electrolytic reactor and plant-microbial fuel cell. ENVIRONMENTAL RESEARCH 2023; 216:114625. [PMID: 36279915 DOI: 10.1016/j.envres.2022.114625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
An innovative design of microbial electrolytic reactor (MER) coupled with Ipomoea aquaticaForsk. plant microbial fuel cell (IAF-PMFC) was developed for azo dye wastewater treatment and electricity generation. This study aims to assess the sequential degradation of azo dye and the feasibility of energy self-sufficiency in the MER/IAF-PMFC system. The decomposition of azo dye into aromatic amines and dye decolorization occurred in the MER at high hydraulic loading of 0.28 m3/(m2·d), while dye intermediates were mainly mineralized in the IAF-PMFC at low hydraulic loading of 0.06 m3/(m2·d). The final decolorization efficiency and COD removal of the combined system reached 99.64% and 92.06% respectively, even at influent dye concentration of 1000 mg/L. The effects of open/closed circuit conditions, presence/absence of aquatic plant and different cathode areas on the performance of the IAF-PMFC for treating the effluent of the MER were systematically tested, and the results showed that closed-circuit condition, plant involvement and larger cathode area were more beneficial to decolorization, detoxification and mineralization of dye wastewater, bioelectricity output, plant growth and photosynthetic rate. The power consumption by the MER was 0.0163 kWh/m3 of dye wastewater, while the highest power generation of the IAF-PMFC reached 0.0183 kWh/m3. The current efficiency of the MER for dye decolorization was as high as 942.83%, while the maximum coulombic efficiency of the IAF-PMFC for intermediates metabolism was only 6.30%, which still had much space of bioelectricity generation promotion. The MER/IAF-PMFC technology can simultaneously realize refractory wastewater treatment and balance of electricity production and consumption.
Collapse
Affiliation(s)
- Shentan Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China; Biotechnology, Department of Chemistry, Faculty of Engineering, Lund University, SE-22100, Lund, Sweden
| | - Zuo Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Xiaojuan Feng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China.
| | - Sang-Hyun Pyo
- Biotechnology, Department of Chemistry, Faculty of Engineering, Lund University, SE-22100, Lund, Sweden
| |
Collapse
|
25
|
Liu Y, Gao X, Cao X, Sakamaki T, Zhang C, Li X. Study on the performance and mechanism of bio-electrochemical system to mitigate membrane fouling in bioreactors. BIORESOURCE TECHNOLOGY 2022; 365:128163. [PMID: 36283665 DOI: 10.1016/j.biortech.2022.128163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
To alleviate membrane fouling, a membrane of the membrane bioreactor was directly used as the anode of the bio-electrochemical system. On the 14th day, the control group had blocked, while the experimental group with a current of 0.44 mA, the increase in ΔTMP was only 2.2 kPa. The polysaccharide and protein concentrations in the open-circuit group were 4.2 and 2.9 times higher than those in the closed-circuit group, respectively. Three-dimensional fluorescence spectroscopy and gas chromatography mass spectrometry showed that most of the deposition in the control group contained high-molecular-weight compounds, especially long-chain ester derivatives, phenols, and complex hydrocarbons, whereas the experimental group was the opposite. Therefore, current (electrons) can change the composition of the cake layer. High-throughput sequencing indicated that a significantly higher abundance of electroactive microorganisms on the experimental than control group. Two-dimensional correlation spectroscopy showed that electrons promote the degradation of polysaccharides, thereby alleviating membrane fouling.
Collapse
Affiliation(s)
- Yanqing Liu
- College of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Xintong Gao
- College of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Xian Cao
- College of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Takashi Sakamaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Chong Zhang
- College of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Xianning Li
- College of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China.
| |
Collapse
|