1
|
Fan Z, Xia W, Zhang H, Peng D, Han S, Wu X, Sun F. Evaluating the mechanism of soybean meal protein for boosting the laccase-catalyzed of thymol onto lignosulfonate via restraining non-specific adsorption. Int J Biol Macromol 2024; 263:130367. [PMID: 38401588 DOI: 10.1016/j.ijbiomac.2024.130367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The control of laccase-catalyzed efficiency often relies on the utilization of modifying enzyme molecules and shielding agents. However, their elevated costs or carcinogenicity led to the inability for large-scale application. To address this concern, we found that a low-cost protein from soybean meal can reduce lignin's ineffective adsorption onto enzymes for improving the efficiency of thymol grafting to lignosulfonate. The results demonstrated that by adding 0.5 mg/mL of additional soybean meal protein, the thymol reaction ratio of the modified lignosulfonate (L-0.5 S) significantly boosted from 18.1 % to 35.0 %, with the minimal inhibitory concentrations of the L-0.5 S against Aspergillus niger dramatically improved from 12.5 mg/mL to 3.1 mg/mL. Multiple characterization methods were employed to better understand the benefit of the modification under the addition of the soybean meal protein. The CO and R1-O group content increased from 20.5 % to 37.8 % and from 65.1 % to 75.5 %, respectively. The proposed potential reaction mechanism was further substantiated by the physicochemical properties. The incorporation of soybean meal effectively mitigated the non-specific adsorption of lignosulfonate, resulting in a reduction of the surface area of lignin from 235.0 to 139.2 m2/g. The utilization of soybean meal as a cost-effective and efficient shielding agent significantly enhanced the efficiency of subsequent enzyme catalysis. Consequently, the application of soybean meal in commercial enzyme catalysis holds considerable appeal and amplifies the relevance of this study in preservative industries.
Collapse
Affiliation(s)
- Zhiwei Fan
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China
| | - Weichao Xia
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China
| | - Huili Zhang
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China
| | - Dandan Peng
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China
| | - Shuaibo Han
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China; Microbes and Insects Control Institute of Bio-based Materials, Zhejiang A&F University, Hangzhou 311300, People's Republic of China.
| | - Xinxing Wu
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China; Microbes and Insects Control Institute of Bio-based Materials, Zhejiang A&F University, Hangzhou 311300, People's Republic of China.
| | - Fangli Sun
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China; Microbes and Insects Control Institute of Bio-based Materials, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| |
Collapse
|
2
|
Peng D, Shan J, Fan Z, Huang C, Chen H, Wu X. Mechanistic insights into the cinnamaldehyde modification of lignin for sustainable anti-fungal reagent. Int J Biol Macromol 2023; 249:125994. [PMID: 37506788 DOI: 10.1016/j.ijbiomac.2023.125994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
The limited anti-fungal activity of enzymatic hydrolysis lignin (EHL) has been a challenge in its direct application as a bamboo preservative. To address this issue, the cinnamaldehyde modification of EHL was carried out to introduce anti-fungal structures into the lignin matrix, effectively enhancing its anti-fungal activity. The results demonstrated that the minimal inhibitory concentrations of the modified lignin (EHL-DC) against Aspergillus niger significantly improved from 16 mg/mL to 1 mg/mL, with comparable enhancements in anti-fungal activity against other fungi. As a result of the modification, the EHL-DC is more prone to interact with fungal cell membranes, contributing to a roughened, shrunken hyphal surface and a decrease in mycelial biomass. Multiple characterization methods were employed to better grapple with the EHL-DC chemical changes. The nitrogen content increased from 2.3 % to 8.3 %, and alterations in elemental compositions further support the proposed reaction mechanism and its role in enhancing EHL's anti-fungal activity. This study offers novel insights into the high-value utilization of enzymatic hydrolysis lignin based on green chemistry principles.
Collapse
Affiliation(s)
- Dandan Peng
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China
| | - Jingqun Shan
- School of Finance, Zhejiang University of Finance and Economics, Hangzhou 310018, People's Republic of China
| | - Zhiwei Fan
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Haili Chen
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China.
| | - Xinxing Wu
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China; Microbes and Insects Control Institute of Bio-based Materials, Zhejiang A&F University, Hangzhou 311300, People's Republic of China.
| |
Collapse
|
3
|
Khalid U, Rehman ZU, Ijaz N, Khan I, Junaid MF. Integrating wheat straw and silica fume as a balanced mechanical ameliorator for expansive soil: a novel agri-industrial waste solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27538-5. [PMID: 37191754 DOI: 10.1007/s11356-023-27538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Resource utilization of agricultural and industrial wastes with minimal screening is highly desirable in the context of sustainable development and environmental protection. In this regard, the current study proposes a novel solution of integrating milled wheat straw (WS) with minimal screening and silica fume (SF) in the form of composite binary admixture (CBA) for the stabilization of highly expansive soils. The optimum amount of WS and SF to produce CBA was determined based on a series of Atterberg's limit tests. The mechanical performance of CBA-treated soil was assessed based on the unconfined compression, direct shear, and flexural tests which showed that unconfined compressive strength (qu), cohesion (c), and flexural strength (f) were increased by 94.3%, 65.7%, and 90.7%, respectively, with an addition of 16% of CBA and 28 days of curing. Furthermore, the CBA-treated soil underwent only a 26% reduction in deformability index (ID) with an addition of 24% CBA. Furthermore, volumetric change response was assessed based on ID consolidation and swelling tests which showed that compression index (Cc), recompression index (Cr), swell potential, free swell index (FSI), and swell pressure were reduced by 72.5%, 47.7%, 59%, 35.8%, and 65%, respectively, with an addition of 16% CBA in the soil and 28 days of curing. In addition, wetting-drying (W-D) cycle tests demonstrated that CBA-treated soil was less vulnerable to W-D seasons as compared to untreated soil. Mineralogical and microstructural tests revealed that the balanced Ca:Si and Ca:Al environment created by CBA within the soil matrix produces cementing compounds, i.e., CSH and CAH, imparts strong bonds, and causes aggregation improving the mechanical response of expansive soil.
Collapse
Affiliation(s)
- Usama Khalid
- National Institute of Transportation (NIT), Risalpur, National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Zia Ur Rehman
- School of Civil Engineering and Surveying, University of Portsmouth, Portland Building, Portland Street, Portsmouth, PO1 3AH, United Kingdom.
| | - Nauman Ijaz
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, College of Civil Engineering, Tongji University, Shanghai, 200092, China
| | - Inamullah Khan
- National Institute of Transportation (NIT), Risalpur, National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Faisal Junaid
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
4
|
Tang W, Tang Z, Qian H, Huang C, He Y. Implementing dilute acid pretreatment coupled with solid acid catalysis and enzymatic hydrolysis to improve bioconversion of bamboo shoot shells. BIORESOURCE TECHNOLOGY 2023; 381:129167. [PMID: 37182678 DOI: 10.1016/j.biortech.2023.129167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Exploiting bamboo shoot shells (BSS) as feedstocks for biorefining is a crucial scheme to advance the bioavailability of bamboo shoots. This work applied traditional dilute sulfuric acid pretreatment (DAP) to treat BSS and simultaneously prepared the solid-acid-catalyst by using BSS as carbon-based carriers. The biocatalysis of the prehydrolysate from DAP and enzymatic hydrolysis of pretreated BSS was subsequently performed to achieve efficient bioconversion of its carbohydrates. The results displayed that 0.1 g/L H2SO4 employed in DAP was the optimal condition for furfural conversion of BSS during biocatalysis, reaching the maximum of 41%. Meanwhile, the enzymatic hydrolysis efficiency of the pretreated BSS also reached the maximum of 97%. This increment of efficiency was ascribed to the enhancement of accessibility and cellulosic crystal size, and also the reduction of surface area of lignin in BSS. Ultimately, the efficient bioutilization of BSS and bioconversion of its carbohydrates were realized by DAP technology.
Collapse
Affiliation(s)
- Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhengyu Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Haojie Qian
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yucai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China.
| |
Collapse
|