1
|
Mussagy CU, Dias JN, Caicedo-Paz AV, Gini ALR, Scarim CB, Tropea A, La Tella R, Mondello L, Lopes-Filho PEL, Tanaka JL, Piazza RD, Marques RFC, Santos LS, Luiz MT, Chorilli M, Santos-Ebinuma VC, Pessoa A, Herculano RD. Microbial astaxanthin-encapsulated polymeric micelles from yeast Phaffia rhodozyma for personalized bioactive colored natural rubber latex bandages. Int J Biol Macromol 2025; 305:141078. [PMID: 39956234 DOI: 10.1016/j.ijbiomac.2025.141078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/26/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
This study explores the development of bioactive, colored natural rubber latex (NRL) bandages by incorporating astaxanthin (AXT), a carotenoid with potent antioxidant and anti-inflammatory properties. AXT is produced by the yeast Phaffia rhodozyma under various light conditions to improve AXT biosynthesis and encapsulated in polymeric micelles to enhance its solubility and stability. The encapsulated AXT is then integrated into NRL bandages, imparting a orange-red hue and potentially therapeutic benefits. Physicochemical characterizations, including UV-Vis spectroscopy and FTIR, reveal interactions between AXT and the micelle components. The bandages exhibit improved hydrophilicity and maintain their thermal stability post-AXT incorporation. Antioxidant capacity assessments show that the NRL bandages retain a significant portion of AXT's antioxidant properties, which can aid in wound healing. The release profile of AXT from the bandages demonstrates an initial burst followed by sustained release, indicating effective delivery of the carotenoid. This innovative approach combines aesthetic appeal with biomedical advantages, offering a personalized solution for wound care applications.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Júlia N Dias
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Bioprocesses and Biotechnology, Araraquara 14800-903, SP, Brazil
| | - Angie V Caicedo-Paz
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| | - Ana L R Gini
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara 14800-903, SP, Brazil
| | - Cauê B Scarim
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara 14800-903, SP, Brazil
| | - Alessia Tropea
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy
| | - Roberta La Tella
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy
| | - Luigi Mondello
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, viale Annunziata, 98168 Messina, Italy
| | - Paulo E L Lopes-Filho
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Jean L Tanaka
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Rodolfo D Piazza
- Laboratory of Magnetic Materials and Colloids, Department of Analytical Chemistry, Physical Chemistry and Inorganic, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP 14800-060, Brazil
| | - Rodrigo F C Marques
- Laboratory of Magnetic Materials and Colloids, Department of Analytical Chemistry, Physical Chemistry and Inorganic, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP 14800-060, Brazil
| | - Lindomar S Santos
- Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo (USP), 3900 Bandeirantes Avenue, Ribeirão Preto, SP 14040-901, Brazil
| | - Marcela T Luiz
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara 14800-903, SP, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara 14800-903, SP, Brazil
| | - Valéria C Santos-Ebinuma
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Bioprocesses and Biotechnology, Araraquara 14800-903, SP, Brazil
| | - Adalberto Pessoa
- Department of Pharmaceutical-Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rondinelli D Herculano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA.
| |
Collapse
|
2
|
Cui H, Zhu X, Yu X, Li S, Wang K, Wei L, Li R, Qin S. Advancements of astaxanthin production in Haematococcus pluvialis: Update insight and way forward. Biotechnol Adv 2025; 79:108519. [PMID: 39800086 DOI: 10.1016/j.biotechadv.2025.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT. However, the industry's further development faces two main challenges: the limited cultivation areas due to light-dependent AXT accumulation and the low AXT yield coupled with high production costs resulting from complex, time-consuming upstream biomass culture and downstream AXT extraction processes. Therefore, it is urgently to develop novel strategies to improve the AXT production in H. pluvialis to meet industrial demands, which makes its commercialization cost-effective. Although several strategies related to screening excellent target strains, optimizing culture condition for high biomass yield, elucidating the AXT biosynthetic pathway, and exploiting effective inducers for high AXT content have been applied to enhance the AXT production in H. pluvialis, there are still some unsolved and easily ignored perspectives. In this review, firstly, we summarize the structure and function of natural AXT focus on those from the algal H. pluvialis. Secondly, the latest findings regarding the AXT biosynthetic pathway including spatiotemporal specificity, transport, esterification, and storage are updated. Thirdly, we systematically assess enhancement strategies on AXT yield. Fourthly, the regulation mechanisms of AXT accumulation under various stresses are discussed. Finally, the integrated and systematic solutions for improving AXT production are proposed. This review not only fills the existing gap about the AXT accumulation, but also points the way forward for AXT production in H. pluvialis.
Collapse
Affiliation(s)
- Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Xiaoli Zhu
- College of Food and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Le Wei
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| |
Collapse
|
3
|
Zan Z, Huang X, Hussain Z, Zhong M, Hou C, Ren M, Xie X. Effects of Culture Medium Enrichment with Zinc on Astaxanthin Accumulation in a New Strain of the Microalga Dysmorphococcus globosus. PLANTS (BASEL, SWITZERLAND) 2024; 13:3338. [PMID: 39683131 DOI: 10.3390/plants13233338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
High Zn2+ concentrations in microalgal cells that produce astaxanthin as a feed additive can reduce the symptoms of malnutrition in aquatic animals. Therefore, in this study, we analysed the effect of Zn2+ in the culture medium on the growth of a newly isolated microalgal strain Dysmorphococcus globosus ZY24. Zn2+ and white light stress altered the pigment content in microalgal cells. In addition, high Zn2+ concentrations in the culture medium altered cell morphology and chlorophyll fluorescence and also increased intracellular Zn2+ accumulation. Further, an optimal Zn2+ concentration in the culture medium promoted the synthesis of astaxanthin and other pigments. When the concentration of Zn2+ was 45.5 mg L-1, Dysmorphococcus globosus ZY24 produced 0.31 mg g-1 astaxanthin, whereas the total zinc content of the microalgae was 4337 mg kg-1. This study confirmed that microalgae have a high capacity for Zn2+ enrichment, providing a theoretical basis for studying Zn2+ enrichment in microalgae. Furthermore, Zn2+ supplementation to stimulate astaxanthin production in microalgae is a practical method to enhance their nutritional value.
Collapse
Affiliation(s)
- Zhaohui Zan
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Xinxin Huang
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zahid Hussain
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Moyu Zhong
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Chenyang Hou
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Maozhi Ren
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Xiulan Xie
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
4
|
Qiu JF, Yang YC, Li RY, Jiao YH, Mou JH, Yang WD, Lin CSK, Li HY, Wang X. Synergistic and stepwise treatment of resveratrol and catechol in Haematococcus pluvialis for the overproduction of biomass and astaxanthin. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:80. [PMID: 38877488 PMCID: PMC11177449 DOI: 10.1186/s13068-024-02527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
To increase the production of biomass and astaxanthin from Haematococcus pluvialis to meet the high market demand for astaxanthin, this study recruited two typical and negligible phytohormones (namely resveratrol and catechol) for the stepwise treatments of H. pluvialis. It was found that the hybrid and sequential treatments of resveratrol (200 μmol) and catechol (100 μmol) had achieved the maximum astaxanthin content at 33.96 mg/L and 42.99 mg/L, respectively. Compared with the hybrid treatment, the physiological data of H. pluvialis using the sequential strategy revealed that the enhanced photosynthetic performance via the Calvin cycle by RuBisCO improved the biomass accumulation during the macrozooid stage; meanwhile, the excessive ROS production had occurred to enhance astaxanthin production with the help of NADPH overproduction during the hematocyst stage. Overall, this study provides improved knowledge of the impacts of phytohormones in improving biomass and astaxanthin of H. pluvialis, which shed valuable insights for advancing microalgae-based biorefinery.
Collapse
Affiliation(s)
- Jia-Fan Qiu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu-Cheng Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ruo-Yu Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu-Hu Jiao
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Wilawan B, Chan SS, Ling TC, Show PL, Ng EP, Jonglertjunya W, Phadungbut P, Khoo KS. Advancement of Carotenogenesis of Astaxanthin from Haematococcus pluvialis: Recent Insight and Way Forward. Mol Biotechnol 2024; 66:402-423. [PMID: 37270443 DOI: 10.1007/s12033-023-00768-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023]
Abstract
The demand for astaxanthin has been increasing for many health applications ranging from pharmaceuticals, food, cosmetics, and aquaculture due to its bioactive properties. Haematococcus pluvialis is widely recognized as the microalgae species with the highest natural accumulation of astaxanthin, which has made it a valuable source for industrial production. Astaxanthin produced by other sources such as chemical synthesis or fermentation are often produced in the cis configuration, which has been shown to have lower bioactivity. Additionally, some sources of astaxanthin, such as shrimp, may denature or degrade when exposed to high temperatures, which can result in a loss of bioactivity. Producing natural astaxanthin through the cultivation of H. pluvialis is presently a demanding and time-consuming task, which incurs high expenses and restricts the cost-effective industrial production of this valuable substance. The production of astaxanthin occurs through two distinct pathways, namely the cytosolic mevalonate pathway and the chloroplast methylerythritol phosphate (MEP) pathway. The latest advancements in enhancing product quality and extracting techniques at a reasonable cost are emphasized in this review. The comparative of specific extraction processes of H. pluvialis biological astaxanthin production that may be applied to large-scale industries were assessed. The article covers a contemporary approach to optimizing microalgae culture for increased astaxanthin content, as well as obtaining preliminary data on the sustainability of astaxanthin production and astaxanthin marketing information.
Collapse
Affiliation(s)
- Busakorn Wilawan
- Institut Biologi Sains, Fakulti Sains, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sook Sin Chan
- Institut Biologi Sains, Fakulti Sains, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tau Chuan Ling
- Institut Biologi Sains, Fakulti Sains, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Woranart Jonglertjunya
- Fermentation Technology Laboratory (FerTechLab), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Poomiwat Phadungbut
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| |
Collapse
|
6
|
Xing H, Sun X, Xu N, Su X, Qin Y, Zhang L, Liu K, Li M, Hu C. The combination of uridine and nitrogen-deprivation promotes the efficient formation of astaxanthin-rich motile cells in Haematococcus pluvialis. BIORESOURCE TECHNOLOGY 2024; 393:130150. [PMID: 38049016 DOI: 10.1016/j.biortech.2023.130150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Astaxanthin accumulation in Haematococcus pluvialis typically occurs alongside the formation of secondary cell wall (SCW), hindering astaxanthin extraction and bio-accessibility. A potential solution lies in cultivating astaxanthin-rich motile cells lacking SCW. This study explored the influence and underlying mechanism of nitrogen-deprivation (ND) on SCW formation and established a connection between pyrimidine metabolism and SCW development. Then, various pyrimidine and ND combinations were examined to cultivate astaxanthin-rich motile cells. The results indicated that, compared to the nitrogen-replete group, the combination of uridine and ND increased the proportion of motile cells by 25-33 times, achieving 95 %, and enhanced astaxanthin yield by 26.52 %. Moreover, the efficiency of astaxanthin extraction from intact, wet motile cells was 91 % - 95 %, which was 5.6-9.0 times that from non-motile cells. This study not only presents a promising method for producing astaxanthin-rich motile cells in H. pluvialis but also provides insights into the relationship between pyrimidine metabolism and SCW development.
Collapse
Affiliation(s)
- Hailiang Xing
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Xiaoyuan Su
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Yujie Qin
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Liuquan Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Kai Liu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Mingyang Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Chaoyang Hu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China.
| |
Collapse
|
7
|
Zhang L, Hu T, Yao S, Hu C, Xing H, Liu K, Sun X, Xu N. Enhancement of astaxanthin production, recovery, and bio-accessibility in Haematococcus pluvialis through taurine-mediated inhibition of secondary cell wall formation under high light conditions. BIORESOURCE TECHNOLOGY 2023; 389:129802. [PMID: 37783237 DOI: 10.1016/j.biortech.2023.129802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
This study explored the use of taurine in enhancing the production and bio-accessibility of astaxanthin in Haematococcus pluvialis, which typically forms a secondary cell wall hindering astaxanthin extraction. The biomass of taurine-treated group significantly increased by 18%, and astaxanthin yield surged by 34% in comparison to the control group. Without cell disruption, astaxanthin recovery from thin-walled cells in the taurine-treated group, using dimethyl sulfoxide and ethanol as extraction reagents, was 97% and 75%, respectively, which were 30-fold higher than those of thick-walled cells in the control group. Additionally, the cell fragmentation rate increased by 86% in taurine-treated group relative to the control group. Comparative transcriptome analysis identified taurine-induced upregulation of genes involved in the astaxanthin biosynthesis pathway and downregulation of those associated with secondary cell wall synthesis. This study thus offers an innovative taurine-based strategy to enhance astaxanthin production and bio-accessibility while shedding light on the mechanisms driving this process.
Collapse
Affiliation(s)
- Liuquan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Tao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Shiqi Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Chaoyang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Hailiang Xing
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Kai Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Xue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Nianjun Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315832, China.
| |
Collapse
|
8
|
Genetic Improvement to Obtain Specialized Haematococcus pluvialis Genotypes for the Production of Carotenoids, with Particular Reference to Astaxanthin. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2023. [DOI: 10.3390/ijpb14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Nowadays, the search for natural substances with a high nutraceutical effect positively impact the world market. Among the most attractive macromolecules are antioxidants, capable of preventing the development of various pathologies. Astaxanthin (ASX) is antioxidant molecule produced by the microalga H. pluvialis as a response to different types of stress. Usually, astaxanthin production involves the first phase of accumulation of the biomass of H. pluvialis (green phase), which is then stressed to stimulate the biosynthesis and accumulation of ASX (red phase). In this study, the H. pluvialis wild-type strain was subjected to random mutagenesis by UV. Among the different mutant strains obtained, only two showed interesting bio-functional characteristics, such as a good growth rate. The results demonstrated that the HM1010 mutant not only has a higher growth trend than the WT mutant but accumulates and produces ASX even in the green phase. This innovative genotype would guarantee the continuous production of ASX, not linked to the two-step process and the uniqueness of the product obtained.
Collapse
|
9
|
Mussagy CU, Dufossé L. A review of natural astaxanthin production in a circular bioeconomy context using Paracoccus carotinifaciens. BIORESOURCE TECHNOLOGY 2023; 369:128499. [PMID: 36535613 DOI: 10.1016/j.biortech.2022.128499] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Astaxanthin (AXT) is a ketocarotenoid with several properties, including antioxidant, antidiabetic and anticancer with a wide range of applications in cosmeceutical, feed, food and pharmaceuticals sectors. The large fraction of AXT available in the market is obtained by chemical route, but the consumers preference for natural products are changing the global market of AXT, and due to that several companies are looking for potential alternative sources such as Gram-negative bacteria Paracoccus carotinifaciens (P. carotinifaciens) to obtain natural AXT. The aim of this critical review is to provide a comprehensive overview of the latest AXT research findings and characteristics of the hyperproducer-AXT P. carotinifaciens. Moreover, a brief description of the potential application of P. carotinifaciens for the production of natural AXT at industrial scale for commercial purposes and the latest advancements in the upstream and downstream procedures following the biorefinery and circular economy percepts are considered.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, France
| |
Collapse
|
10
|
Bioremediation of Crude Oil by Haematococcus Pluvialis: A Preliminary Study. Processes (Basel) 2022. [DOI: 10.3390/pr10122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nowadays, oil pollution is one of the main environmental problems. The current methods for recovering spills mainly involve chemical agents, but scientific research has focused on more natural and less harmful techniques for the environment, including a consortium of bacteria and microalgae to clean up water contaminated by hydrocarbons. The purpose of this preliminary study was to evaluate the ability of a microalga belonging to Chlorophyceae to grow in the presence of crude oil and remove the principal contaminants. H. pluvialis, which is usually used for nutraceutical purposes, thanks to the production of astaxanthin, was able to grow in anaerobic conditions, varying its metabolism from autotrophic to heterotrophic, exploiting the carbon present in the solution deriving from the presence of 1% of crude oil. Furthermore, the results of bioremediation showed a relevant reduction in chemical pollutants such as nitrate, fluoride, sulfate, and phosphate. The most important aspect of the study was the reduction after 160 days in the hydrocarbon concentration inside not only the culture medium (−32%) but also the algal biomass (−80.25%), demonstrating an optimized degradation rather than a simple absorption inside the alga.
Collapse
|