1
|
Feng J, Zhu S, Huang S, Yu Y, Zhu N, Mojiri A, Ge D. Effects of ozonation sludge reduction on nutrient removal and microbial community diversity of conventional A 2/O and reversed A 2/O processes. ENVIRONMENTAL TECHNOLOGY 2025:1-15. [PMID: 40404595 DOI: 10.1080/09593330.2025.2506022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/08/2025] [Indexed: 05/24/2025]
Abstract
To optimise ozonation sludge reduction in the activated sludge process, it is crucial to monitor nutrient removal and pay particular attention to the influential biological species. This study employed high-throughput sequencing to examine the microbial composition and diversity in the anaerobic-anoxic-oxic (A2/O) process, the A2/O process with ozonation, and the reversed A2/O process with ozonation. The diversity analysis aimed to identify discrepancies and similarities in microbial communities among these groups, thereby elucidating the varying biological efficiencies. Furthermore, the results from Illumina MiSeq sequencing revealed significant diversification in microbial community structures in different processes. Ozonation sludge notably inhibited certain species, including the order Bacteroidales within the class Bacteroidia, as well as the orders Rhizobiales and Rhodospirillales within the class Alphaproteobacteria. Additionally, ozonation sludge exerted a notable impact on specific orders within the class Gammaproteobacteria, including Aeromonadales, Chromatiales, and HOC36. In contrast, it stimulated the proliferation of other microbial groups, such as Lactobacillales, Clostridiales, as well as Burkholderiales and Rhodocyclales. The inhibition and promotion of ozonation sludge in conventional and reversed A2/O processes resulted in various microbial richness and diversity, which rendered the distinctive biochemical activities and wastewater treatment performances. Betaproteobacteria increased significantly, especially in the reversed A2/O process, and Betaproteobacteria played an important role in the nitrogen removal and phosphorus removal process. These findings are useful for guiding the ozonised sludge system to reduce carbon, denitrification, and phosphorus removal to meet the emission standards, and the identification and enhancement of the construction of potential key biological flora for better wastewater treatment and sludge reduction.
Collapse
Affiliation(s)
- Junkun Feng
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, People's Republic of China
| | - Shiyun Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shouqiang Huang
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, People's Republic of China
| | - Yalin Yu
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, People's Republic of China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Amin Mojiri
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Dongdong Ge
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, People's Republic of China
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Wang QG, Guo BX, Ai JY, Shi WY, Zhang KJ, Wang P, Wang WH. Synchronous control of nitrogen and phosphorus release from sediments in shallow lakes under wind disturbance by modified zeolite and Ca/Al-based sludge combination. ENVIRONMENTAL RESEARCH 2025; 264:120448. [PMID: 39586516 DOI: 10.1016/j.envres.2024.120448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/01/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
To inhibit eutrophication caused by endogenous pollutants release, the experiment explored the efficiency and mechanism of the synchronous control of nitrogen (N) and phosphorus (P) release from sediments in shallow lakes under wind disturbance by modified Ca/Al-based sludge (MS) and modified zeolite (MZ). High-temperature calcination and NaCl impregnation increased the pore volume of MS and Na+ content of MZ, and the adsorption capacity of MS for PO43--P and MZ for NH4+-N was as high as 42.01 and 20.28 mg g-1. The results of a 90-day incubation experiment showed that the addition of MS and MZ increased the abundance of Thauera, Nitrospira, Denitratisoma, and Clostridium, while decreasing the proportion of Proteus Hauser and Saccharimonadales, thereby reducing the active N and P contents in sediments through microbial transformation. At the same time, the efficient adsorption performance of the MS and MZ resulted in a significant decrease in pollutants in the interstitial water and sediments. In addition, sediment resuspension caused by wind disturbance increased the contact between sediments and remediation agents, resulting in the action depth of covering materials exceeding 100 mm. Compared to adding MS or MZ alone, the combination of the two (MSZG) could synchronously, efficiently, and stably inhibit N and P release. Under the coupling effects of physical interception, physicochemical adsorption, and biotransformation, the average TN, NH4+-N, TP, and PO43--P in the overlying water of the MSZG decreased by 72.13%, 88.92%, 69.28%, and 81.26%, respectively, compared to Control, which satisfying the Class III standard for surface water. Therefore, this study could provide reference for controlling endogenous release, improving eutrophication in shallow lakes under wind disturbance, and recycling residual sludge from sewage plants.
Collapse
Affiliation(s)
- Qiu-Gang Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Bing-Xu Guo
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Jun-Yu Ai
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Wei-Yi Shi
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Ke-Jia Zhang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Pu Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Wen-Huai Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China.
| |
Collapse
|
3
|
Zhang S, Wang A, Li L, Liang Z, Huang K, Ye Q, Deng G, Yang Y, Li P, Yu G, Liang Y. Phosphorus immobilization in sulfide-ferrous oxidation process driven by nitrate reduction during black-odorous sediment remediation. BIORESOURCE TECHNOLOGY 2024; 407:131130. [PMID: 39032533 DOI: 10.1016/j.biortech.2024.131130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
During remediation of black-odorous sediment, the pathways of phosphorus immobilization require clarification alongside the oxidation of sulfide and ferrous. This study separated the oxidation stages of sulfide and ferrous through controlled sodium nitrate dosing ratios and methods, and analyzed the changes in phosphorus species and immobilization effects throughout these processes. Results showed that iron-bound phosphorus was the primary contributor to the phosphorus immobilization in the oxidation process, with increased 19% in ferrous oxidation stage and affected the transformation between phosphorus sources or sinks in the adsorption experiment. Additionally, the increase in abundance of phosphorus uptake and transport genes, and denitrifying phosphorus accumulation genes in sediment after ferrous oxidation (1 %-18 % and 87 %-164 %, respectively) indicated the potential for biological phosphorus immobilization. These results demonstrated that higher degrees of sediment oxidation correlate with stronger phosphorus immobilization capacities, providing theoretical bases for phosphorus immobilization during the restoration of black-odorous water bodies.
Collapse
Affiliation(s)
- Shengrui Zhang
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ao Wang
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Luyao Li
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ziyang Liang
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Kongrong Huang
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qingqi Ye
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Guangkang Deng
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ying Yang
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Peiling Li
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Guangwei Yu
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China.
| | - Yuhai Liang
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510642, China.
| |
Collapse
|
4
|
Zhang R, He J, Wang M, Duan S, Zhang J. Nitrate and nitrite utilization during denitrifying phosphorus removal: Electron acceptor preference and feasible process combinations. BIORESOURCE TECHNOLOGY 2024; 406:131081. [PMID: 38977037 DOI: 10.1016/j.biortech.2024.131081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Denitrifying phosphorus removal (DPR), which is dominated by denitrifying polyphosphate-accumulating organisms (DPAOs), is a promising process for nitrogen and phosphorus removal. Denitrifying glycogen-accumulating organisms (DGAOs) and DPAOs typically coexist in the DPR sludge, complicating the study of DPAOs' denitrification capacity. In this study, two reactors were fed with nitrate and nitrite during the anoxic phase to cultivate nitrate-DPR and nitrite-DPR sludge. Both reactors yielded high and low DGAO abundance sludges, enabling the evaluation of the denitrification capacity of DPAOs. For the nitrate-DPR sludge, the nitrite reduction rate was 1.63 times higher than the nitrate reduction rate when DPAOs were the primary denitrifiers. For the nitrite-DPR sludge, the reduction rate of nitrite was more than three times that of nitrate, irrespective of DGAO abundance. These findings indicated that DPAOs preferred nitrite to nitrate and were well suited to reduce nitrite rather than reduce nitrate to supply nitrite.
Collapse
Affiliation(s)
- Ruimiao Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Mengfei Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Shengye Duan
- School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Jie Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| |
Collapse
|
5
|
Fan J, Du X, Zhao H, Yao W. Allelochemicals-mediated interaction between algae and bacteria: Direct and indirect contact. BIORESOURCE TECHNOLOGY 2024; 398:130525. [PMID: 38437966 DOI: 10.1016/j.biortech.2024.130525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Secondary metabolites with bioactivity are allelochemicals. This study adopted direct contact (R0) and indirect contact (separated by 0.45 µm membrane, R1-A for algae, R1-S for sludge) to reveal the role of metabolites especially allelochemicals on interaction of bacteria and algae. Direct contact exhibited better nutrients removal than indirect contact, due to less antibacterial allelochemicals and oxidative stress. Bacterial signaling molecules were not detected. The major algae-derived allelochemicals were 13-Docosenamide, 9-Octadecenamide, n-Hexadecanoic acid, erucic acid, octadecanoic acid, β-sitosterol, and E,E,Z-1,3,12-Nonadecatriene-5,14-diol. Furthermore, presence of 13-Docosenamide and 9-Octadecenamide was associated with succession of Flavobacterium and suppression of nitrifying bacteria (Nitrosomonas, Ellin6067, and Nitrospira). Direct contact stimulated denitrifying bacteria Saccharimonadales and algae Scenedesmus, whereas indirect contact is friendly to Dechloromonas, Competibacter, nitrifying bacteria, algae Desmodesmus and Dictyosphaerium. This study highlights the essentiality of cell contact of bacteria-algae in establishing synergy, as cell contact mitigates antagonistic effect induced by metabolites.
Collapse
Affiliation(s)
- Jie Fan
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xingyu Du
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huangbo Zhao
- College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Weiguo Yao
- Center for commercialization of scientific and technological achievements, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
6
|
Zhang X, Li X, Zhang L, Peng Y. Enhancing nitrogen removal performance through intermittent aeration in continuous plug-flow anaerobic/aerobic/anoxic process treating low-strength municipal sewage. BIORESOURCE TECHNOLOGY 2024; 391:129979. [PMID: 37926355 DOI: 10.1016/j.biortech.2023.129979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Advanced nitrogen removal cannot be achieved through the conventional biological nitrogen removal process, which requires higher carbon sources and aeration energy. The proposal of intermittent aeration in the aerobic chambers offered an innovative approach to enhance nitrogen removal in low carbon-to-nitrogen ratio (C/N) municipal sewage, using a plug-flow reactor with anaerobic/aerobic/anoxic (AOA) process. Due to the effective utilization of internal carbon sources through the intermittent aeration, the total inorganic nitrogen removal efficiency (NRE) increased to 77.9 ± 3.2 % with the mean aerobic hydraulic retention time of only 3.2 h and a low C/N of 3.3 during the operation of 210 days. Polyhydroxyalkanoates dominated the nitrogen removal in this AOA system, accounting for 48.0 %, primarily occurring in the alternant aerobic/anoxic chambers. Moreover, the microbial community structure remained unchanged while the NRE increased to 77.9 %. This study provided an efficient and economic strategy for the continuous plug-flow AOA process.
Collapse
Affiliation(s)
- Xiyue Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
7
|
Tang A, Wang Q, Wan H, Kang S, Xie S, Chen J, He J, Liang D, Huang A, Shi J, Luo X. Phosphorus biorecovery from wastewater contaminated with multiple nitrogen species by a bacterial consortium. BIORESOURCE TECHNOLOGY 2023; 381:129082. [PMID: 37100300 DOI: 10.1016/j.biortech.2023.129082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023]
Abstract
Recovering finite and non-substitutable phosphorus from liquid waste streams through bio-mediated techniques has attracted increasing interest, but current approaches are incredibly dependent on ammonium. Herein, a process to recover phosphorus from wastewater under multiple nitrogen species conditions was developed. This study compared the effects of nitrogen species on the recovery of phosphorus resources by a bacterial consortium. It found that the consortium could not only efficiently utilize ammonium to enable phosphorus recovery but also utilize nitrate via dissimilatory nitrate reduction to ammonium (DNRA) to recover phosphorus. The characteristics of the generated phosphorus-bearing minerals, including magnesium phosphate and struvite, were evaluated. Furthermore, nitrogen loading positively influenced the stability of the bacterial community structure. The genus Acinetobacter was dominant under nitrate and ammonium conditions, with a relatively stable abundance of 89.01% and 88.54%, respectively. The finding may provide new insights into nutrient biorecovery from phosphorus-containing wastewater contaminated with multiple nitrogen species.
Collapse
Affiliation(s)
- Aiping Tang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Qingyao Wang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huiqin Wan
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Shitian Kang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Shuixia Xie
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jiali Chen
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jiali He
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Donghui Liang
- College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Zhongkai Road, Haizhu District, Guangzhou 510225, PR China
| | - Anping Huang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jingxin Shi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Xianxin Luo
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|