1
|
Navalho S, Ferrer-Ledo N, Barbosa MJ, Varela J. Nannochloropsis Lipids and Polyunsaturated Fatty Acids: Potential Applications and Strain Improvement. Mar Drugs 2025; 23:128. [PMID: 40137314 PMCID: PMC11943726 DOI: 10.3390/md23030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
The genus Nannochloropsis comprises a group of oleaginous microalgae that accumulate polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA). These molecules are essential for the correct development and health of humans and animals. Thanks to their attractive lipid profile, Nannochloropsis is mainly marketed as a feed ingredient in aquaculture. In microalgae of this genus, contents and cellular location of PUFAs are affected by the growth conditions and gene expression. Strain improvement through non-recombinant approaches can generate more productive strains and efficient bioprocesses for PUFA production. Nevertheless, the lack of specific markers, detection methods, and selective pressure for isolating such mutants remains a bottleneck in classical mutagenesis approaches or lipid quality assessment during cultivation. This review encompasses the importance of PUFAs and lipid classes from Nannochloropsis species and their potential applications. Additionally, a revision of the different ways to increase PUFA content in Nannochloropsis sp. by using classical mutagenesis and adaptive laboratory evolution is also presented, as well as various methods to label and quantify lipids and PUFAs from Nannochloropsis microalgae.
Collapse
Affiliation(s)
- Sofia Navalho
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (N.F.-L.); (M.J.B.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Narcis Ferrer-Ledo
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (N.F.-L.); (M.J.B.)
| | - Maria J. Barbosa
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (N.F.-L.); (M.J.B.)
| | - João Varela
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
2
|
Kleiner FH, Oh JJ, Aubin-Tam ME. Solving Challenges in Microalgae-Based Living Materials. ACS Synth Biol 2025; 14:307-315. [PMID: 39980378 PMCID: PMC11852197 DOI: 10.1021/acssynbio.4c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Indexed: 02/22/2025]
Abstract
Engineered living materials (ELMs) integrate aspects of material science and biology into a unique platform, leading to materials and devices with features of life. Among those, ELMs containing microalgae have received increased attention due to the many benefits photosynthetic organisms provide. Due to their relatively recent occurrence, photosynthetic ELMs still face many challenges related to reliability, lifetime, scalability, and more, often based on the complicated crosstalk of cellular, material-based, and environmental variables in time. This Viewpoint aims to summarize potential avenues for improving ELMs, beginning with an emphasis on understanding the cell's perspective and the potential stresses imposed on them due to recurring flaws in many current ELMs. Potential solutions and their ease of implementation will be discussed, ranging from choice of organism, adjustments to the ELM design, to various genetic modification tools, so as to achieve ELMs with longer lifetime and improved functionality.
Collapse
Affiliation(s)
- Friedrich Hans Kleiner
- Department of Bionanoscience, Kavli
Institute of Nanoscience, Delft University
of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Jeong-Joo Oh
- Department of Bionanoscience, Kavli
Institute of Nanoscience, Delft University
of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli
Institute of Nanoscience, Delft University
of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
3
|
Sun T, Jiang H, Xu X, Ma Y, Liang X, Wang R, Gu Y, Li S, Qiu Y, Sun D, Xu H, Lei P. Adaptive laboratory evolution of Naematelia aurantialba under high temperature for efficient production of exopolysaccharide. Int J Biol Macromol 2024; 263:130425. [PMID: 38412938 DOI: 10.1016/j.ijbiomac.2024.130425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Liquid fermentation could revolutionize mushroom polysaccharide production, but the low temperature constraint hampers the process. This study implemented adaptive laboratory evolution (ALE) to enhance the thermotolerance of Naematelia aurantialba strains and increase expolysaccharide production. After 75 ALE cycles at 30 °C, the adaptive strain surpassed the wild-type strain by 5 °C. In a 7.5 L fermentor at 30 °C, the ALE strain yielded 17 % more exopolysaccharide than the wild type strain at 25 °C. Although the exopolysaccharide synthesized by both strains shares a consistent monosaccharide composition, infrared spectrum, and glycosidic bond composition, the ALE strain's exopolysaccharide has a larger molecular weight. Furthermore, the ALE strain's exopolysaccharide exhibits superior cryoprotection performance compared to that produced by the original strain. The adapted strain demonstrated lower ROS levels and increased activity of antioxidant enzymes, indicating improved performance. Fatty acid profiling and transcriptomics revealed reconfiguration of carbohydrate metabolism, amino acid metabolism, and membrane lipid synthesis in thermophilic strains, maintaining cellular homeostasis and productivity. This study provides efficient strains and fermentation methods for high-temperature mushroom polysaccharide production, reducing energy consumption and costs.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hao Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yuhang Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoning Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Dafeng Sun
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650032, Yunnan, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
4
|
Ye Y, Liu M, Yu L, Sun H, Liu J. Nannochloropsis as an Emerging Algal Chassis for Light-Driven Synthesis of Lipids and High-Value Products. Mar Drugs 2024; 22:54. [PMID: 38393025 PMCID: PMC10890015 DOI: 10.3390/md22020054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
In light of the escalating global energy crisis, microalgae have emerged as highly promising producers of biofuel and high-value products. Among these microalgae, Nannochloropsis has received significant attention due to its capacity to generate not only triacylglycerol (TAG) but also eicosapentaenoic acid (EPA) and valuable carotenoids. Recent advancements in genetic tools and the field of synthetic biology have revolutionized Nannochloropsis into a powerful biofactory. This comprehensive review provides an initial overview of the current state of cultivation and utilization of the Nannochloropsis genus. Subsequently, our review examines the metabolic pathways governing lipids and carotenoids, emphasizing strategies to enhance oil production and optimize carbon flux redirection toward target products. Additionally, we summarize the utilization of advanced genetic manipulation techniques in Nannochloropsis. Together, the insights presented in this review highlight the immense potential of Nannochloropsis as a valuable model for biofuels and synthetic biology. By effectively integrating genetic tools and metabolic engineering, the realization of this potential becomes increasingly feasible.
Collapse
Affiliation(s)
- Ying Ye
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
| | - Meijing Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Lihua Yu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| |
Collapse
|
5
|
Song K, Zhou Z, Huang Y, Chen L, Cong W. Multi-omics insights into the mechanism of the high-temperature tolerance in a thermotolerant Chlorella sorokiniana. BIORESOURCE TECHNOLOGY 2023; 390:129859. [PMID: 37832851 DOI: 10.1016/j.biortech.2023.129859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Improving high-temperature tolerance of microalgae is crucial to enhance the robustness and economy of microalgae industrial production. Herein, a continuous adaptive laboratory evolution (ALE) system was developed to generate the thermotolerant strain of Chlorella sorokiniana. The resulting thermotolerant strain TR42 exhibited excellent cell growth and biomass production at 42 °C, the temperature that the original strain (OS) could not survive. The high-temperature resistant mechanism of TR42 was investigated by integrating the physiology, transcriptome, proteome and metabolome analyses, which involved enhancing antioxidant capacity, maintaining protein homeostasis, remodeling photosynthetic metabolism, and regulating the synthesis of heat-stress related metabolites. The proof-of-concept high-temperature outdoor cultivation demonstrated that TR42 exhibited 1.15- to 5.72-fold increases in biomass production and 1.62- to 7.04-fold increases in lipid productivity compared to those of OS, respectively, which provided a promising platform for microalgae industrial production. Thus, the multi-system thermotolerant mechanism of TR42 offered potential targets for enhancing high-temperature tolerance of microalgae.
Collapse
Affiliation(s)
- Kejing Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenzhen Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yaxin Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Chen
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wei Cong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
6
|
Chang JS, Loke Show P, Varjani S, Mannina G. Advances in bioresource technology towards carbon neutrality. BIORESOURCE TECHNOLOGY 2023; 377:128925. [PMID: 36940879 DOI: 10.1016/j.biortech.2023.128925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Research Centre for Smart Sustainable Circular Economy, Tunghai 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Giorgio Mannina
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
7
|
Kim S, Im H, Yu J, Kim K, Kim M, Lee T. Biofuel production from Euglena: Current status and techno-economic perspectives. BIORESOURCE TECHNOLOGY 2023; 371:128582. [PMID: 36610485 DOI: 10.1016/j.biortech.2023.128582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Sustainable aviation fuels (SAFs) can contribute reduce greenhouse gas emissions compared to conventional fuel. With the increasing SAFs demand, various generations of resources have been shifted from the 1st generation (oil crops), the 2nd generation (agricultural waste), to the 3rd generation (microalgae). Microalgae are the most suitable feedstock for jet biofuel production than other resources because of their productivity and capability to capture carbon dioxide. However, microalgae-based biofuel has a limitation of high freezing point. Recently, a jet biofuel derived from Euglena wax ester has been paying attention due to its low freezing point. Challenges still remain to enhance production yields in both upstream and downstream processes. Studies on downstream processes as well as techno-economic analysis on biofuel production using Euglena are highly limited to date. Economic aspects for the biofuel production will be ensured via valorization of industrial byproducts such as food wastes.
Collapse
Affiliation(s)
- Sunah Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyungjoon Im
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Keunho Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Minjeong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
8
|
Minireview: Engineering evolution to reconfigure phenotypic traits in microbes for biotechnological applications. Comput Struct Biotechnol J 2022; 21:563-573. [PMID: 36659921 PMCID: PMC9816911 DOI: 10.1016/j.csbj.2022.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
Adaptive laboratory evolution (ALE) has long been used as the tool of choice for microbial engineering applications, ranging from the production of commodity chemicals to the innovation of complex phenotypes. With the advent of systems and synthetic biology, the ALE experimental design has become increasingly sophisticated. For instance, implementation of in silico metabolic model reconstruction and advanced synthetic biology tools have facilitated the effective coupling of desired traits to adaptive phenotypes. Furthermore, various multi-omic tools now enable in-depth analysis of cellular states, providing a comprehensive understanding of the biology of even the most genomically perturbed systems. Emerging machine learning approaches would assist in streamlining the interpretation of massive and multiplexed datasets and promoting our understanding of complexity in biology. This review covers some of the representative case studies among the 700 independent ALE studies reported to date, outlining key ideas, principles, and important mechanisms underlying ALE designs in bioproduction and synthetic cell engineering, with evidence from literatures to aid comprehension.
Collapse
|