1
|
Chen Z, Zhao C, Luo X, Liu G, Hou S. Hydrogel immobilized bacteria@metal-organic-frameworks composite augmented bisphenol A removal from activated sludge and its regulation behavior on sludge community. BIORESOURCE TECHNOLOGY 2025; 426:132372. [PMID: 40064452 DOI: 10.1016/j.biortech.2025.132372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Improving degradation efficiency of activated sludge towards bisphenol A (BPA) is related to water safety. A hydrogel immobilized bacteria@metal-organic-frameworks (im-SQ-2@MOFs) was synthesized previously, which was a composite formed by metal organic frameworks adhering to BPA degrading bacteria. Accordingly, this study added im-SQ-2@MOFs as enhancer to augment the BPA degradation ability of activated sludge. Results indicated that after the addition of im-SQ-2@MOFs, the augmented activated sludge system maintained 90 % BPA degradation rate for 10 mg/L BPA. Meanwhile, the system also presented 80-97 % degradation effect for other phenolic pollutants. Augmentation mechanism was revealed through multi-omics analysis. Firstly, im-SQ-2@MOFs enriched the degradation functional microorganisms in activated sludge, and microbial communication was further prompted. Besides, organic compounds degrading enzymes were upregulated to intensify BPA hydrolysis. Furthermore, electron transfer during BPA degradation was accelerated. Results provide new perspective on the development of bio-augmented materials to improve the efficiency of sewage treatment plants. TAKE HOME MESSAGE.
Collapse
Affiliation(s)
| | | | - Xuemei Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Sichuan 610015, China.
| | - Guotao Liu
- Chengdu Medical College, Chengdu 610500, China.
| | - Siyu Hou
- Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
2
|
Zhang C, Feng T, Deng X, Mohamed TA, Wu J. Analyze the impact of lignin depolymerization process and its products on humic substance formation. Int J Biol Macromol 2025; 295:139476. [PMID: 39788255 DOI: 10.1016/j.ijbiomac.2025.139476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
This study aimed to identify types of lignin depolymerization products (LDP) and their role in humic substances (HS) formation, and little research has revealed which LDP could participate into HS formation during composting. Therefore, rice straw (RS), peanut straw (PS) and pine needles (PN) were selected for their different lignin structures to qualitatively and quantitative analyze LDP firstly. Qualitative results indicated that RS, PS and PN mainly produced LDP with G-type, common group and dimer structure. While quantitative results showed that RS and PS were more prone to degradation, and PN mainly promoted the formation of HS.During the lignin humification, Proteobacteria, Firmicutes, Actinobacteria-dominated microorganisms played a major role in facilitating monomeric substances into HS formation. This study comprehensively analyzed the process of depolymerization and humification of different kinds of lignin. It provides guidance for the resource utilization of lignin and the efficient treatment of agricultural organic waste.
Collapse
Affiliation(s)
- Chunhao Zhang
- College of Life Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Ting Feng
- College of Life Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Xijing Deng
- College of Life Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Taha Ahmed Mohamed
- Institute of Urban Environment, Chinese Academy of Science, Xiamen, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China.
| |
Collapse
|
3
|
Liu M, Xu L, Yin Z, He D, Zhang Y, Liu C. Harnessing the potential of exogenous microbial agents: a comprehensive review on enhancing lignocellulose degradation in agricultural waste composting. Arch Microbiol 2025; 207:51. [PMID: 39893606 DOI: 10.1007/s00203-025-04247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Composting converts organic agricultural wastes into value-added products, yet the presence of significant non-biodegradable lignocelluloses hinders its efficiency. The introduction of various exogenous microbial agents has been shown to effectively addresses this challenge. In this context, basing on the microbial enzymatic mechanism for lignocellulose degradation, this paper synthesizes the latest research advancements and practical applications of exogenous microbial agents in agricultural waste composting. Given that the effectiveness of lignocellulose degradation is highly dependent on the waste's inherent characteristics, it is crucial to carefully consider the composition of fungi and bacteria, the dosage of microbial agents, and the composting process operation, tailored to the specific type of agricultural waste. Moreover, the combination of additives with exogenous microbial agents can further enhance the degradation of lignocelluloses and the humification of organic matters. Furthermore, insights into the future research and application trends of exogenous microbial agents in agricultural waste composting was prospected.
Collapse
Affiliation(s)
- Meng Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Luxin Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Zhixuan Yin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China.
| | - Deming He
- Shanghai Chengtou Shangjing Ecological Restoration Technology Co., Shanghai, 200120, People's Republic of China
| | - Yujia Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| |
Collapse
|
4
|
Tu X, Yin B, Kang J, Wu Z, Guo Y, Ao G, Sun Y, Ge J, Ping W. Potassium persulfate enhances humification of chicken manure and straw composting: The perspective of rare and abundant microbial community structure and ecological interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175162. [PMID: 39084372 DOI: 10.1016/j.scitotenv.2024.175162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/05/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Improper disposal of organic solid waste results in serious environmental pollution. Aerobic composting provides an environmentally friendly treatment method, but improving humification of raw materials remains a challenge. This study revealed the effect of different concentrations of potassium persulfate (PP) on humification of chicken manure and straw aerobic composting and the underlying microbial mechanisms. The results showed that when 0.6 % PP was added (PPH group), humus and the degree of polymerization were 80.77 mg/g and 2.52, respectively, which were significantly higher than those in 0.3 % PP (PPL group). As the concentration of PP was increased, the composition of rare taxa (RT) changed and improved in evenness, while abundant taxa (AT) was unaffected. Additionally, the density (0.037), edges (3278), and average degree (15.21) in the co-occurrence network decreased compared to PPL, while the average path (4.021) and modularity increased in PPH. This resulted in facilitating the turnover of matter, information, and energy among the microbes. Interestingly, cooperative behavior between microorganisms during the maturation period (24-60 d) occurred in PPH, but competitive relationships dominated in PPL. Cooperative behavior was positively correlated with humus (p < 0.05). Because the indices, such as higher degree, betweenness centrality, eigenvector centrality, and closeness centrality of the AT, were located in the microbial network center compared to RT, they were unaffected by the concentration of PP. The abundance of carbohydrate and amino acid metabolic pathways, which play an important role in humification, were higher in PPH. These findings contribute to understanding the relative importance of composition, interactions, and metabolic functionality of RT and AT on humification during chicken manure and straw aerobic composting under different concentrations of PP, as well as provide a basic reference for use of various conditioning agents to promote humification of organic solid waste.
Collapse
Affiliation(s)
- Xiujun Tu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bo Yin
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zhenchao Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yuhao Guo
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Guoxu Ao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
5
|
Meng X, Liang X, Wang P, Ren L. Effect of thermophilic bacterial complex agents on synergistic humification of carbon and nitrogen during lignocellulose-rich kitchen waste composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122799. [PMID: 39393336 DOI: 10.1016/j.jenvman.2024.122799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
This work reported the effects of thermophilic bacterial agents on degrading persistent lignocellulose and reducing the loss of valuable nitrogen in kitchen waste (KW) composting. The results showed that thermophilic bacterial compound agents improved the high temperature period by 8 days, and increased the ligninase activity by 0.5-3 times during the composting process. The activity of cellulase increased up to 1 time in agent A (Geobacillus, Clostridium caenicola, Haloplasma) adding group by improving the microbial activity of lignocellulosic degradation metabolic pathways. Nitrogen storage increased to 70% in group added with agent B (Clostridium caenicola, Geobacillus, Clostridium sp. TG60-81) by increasing the population abundance of nitrogen-fixing microorganisms such as Bacillus, Hungateiclostridium and Herbaspirillum, and changed amino acid metabolic pathways. In general, agents A and B could increase the thermophilic phase, optimize the microbial community structure, realize the synergistic humification of carbon and nitrogen, and convert KW into mature and high quality fertilizers.
Collapse
Affiliation(s)
- Xingyao Meng
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaonan Liang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Pan Wang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Lianhai Ren
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
6
|
Chen X, Song X, Liang Y, Wang F, Pan C, Wei Z. Evaluation of the potential horizontal gene transfer ability during chicken manure and pig manure composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124621. [PMID: 39067739 DOI: 10.1016/j.envpol.2024.124621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Resistance genes have been identified as emerging pollutants due to their ability to rapidly spread in the environment through horizontal gene transfer (HGT). Microbial community serves as the pivotal factor influencing the frequency of HGT during manure composting. However, the characteristics of HGT in microbial community from different types of manure were unclear. Therefore, this study aimed to evaluate the potential risk of HGT in bacterial community through the co-composting of chicken manure and pig manure in different proportions. The experimental results showed that the abundance of sulfonamide antibiotic resistance genes and integrase genes was higher during pig manure composting than those during chicken manure composting. In addition, the addition of pig manure also increased resistance genes abundance during chicken manure composting. These results suggested that the potential HGT risk was greater during pig manure composting. Furthermore, microbial analysis of co-composting suggested that bacterial community of pig manure was more competitive and adaptable than that of chicken manure. Ultimately, statistical analysis indicated that compared to chicken manure composting, the potential ability of HGT was greater during pig manure composting. This study provided the vital theoretical support and scientific guidance for mitigating the HGT risk during manure composting.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyang Song
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yao Liang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Feng Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaonan Pan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
7
|
Yang G, Luo Y, Bian Y, Chen X, Chen L, Huang X. Electro-mediated cathodic oxygen drives respiration chain electron transfer of electroactive bacteria to enhance refractory organic biological oxidation. WATER RESEARCH 2024; 268:122585. [PMID: 39378747 DOI: 10.1016/j.watres.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
In electro-mediated biological system (EMBS), biological anode and cathode components were incorporated into an anaerobic bioreactor, providing a small amount of oxygen to the cathode as an electron acceptor. Oxygen diffusion also impacts the anode's anaerobic ecological environment. This study unraveled how oxygen influences the metabolism and electron transport chain during the biological oxidation of refractory organics. Under the influence of electromotive force, the straight-chain model pollutant N,N-dimethylformamide (DMF) showed rapid degradation and better ammonification, with maximum rates reaching 0.53 h-1 and 26.6 %, respectively. Elevated electromotive force promoted the enrichment of functional electroactive bacteria on the anode and enhanced the availability of electron storage sites, thereby facilitating electron transfer at the anode-biofilm interface. Conversely, the anodic micro-aerobic environment disrupted the anaerobic microbial community structure, and the competitive interactions among fermentative bacteria and electroactive bacteria inhibited DMF degradation. Metagenomic analysis confirmed that cathodic oxygen up-regulated the pyruvate metabolism and the tricarboxylic acid (TCA) cycle to generate NADH and synthesize ATP. The electromotive force induced by cathodic oxygen accelerated the electron transfer in respiratory chains of electroactive bacteria, driving the oxidation of NADH and enhancing the degradation of organics. This study improves our understanding of the regulatory mechanisms governing metabolic pathways under the influence of cathodic oxygen. It offers potential for developing more efficient EMBS in industrial wastewater pretreatment, ensuring that oxygen is prevented from diffusing to the anode during micro-aeration at the cathode.
Collapse
Affiliation(s)
- Guang Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yudong Luo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanhong Bian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xi Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lu Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Tao W, Liu J, Hou Y, Shen B, Tang Y, Zhao Y. Characterization of manganese(II)-coupled functional microorganisms in driving lignin degradation during straw composting. Int J Biol Macromol 2024; 277:134192. [PMID: 39069040 DOI: 10.1016/j.ijbiomac.2024.134192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The intricate structure of lignin in straw makes it challenging to hydrolyze, making it a key focus of current research. However, there has been limited study on the effect of enzyme inducer (MnSO4) combined with functional microorganisms on lignin degradation during straw composting. Based on this, four composting treatment groups were set up in this study. Control (CK), functional microorganism addition treatment (F), Mn2+ enzyme inducer (Mn), and Mn2+ enzyme inducer coupled with functional microorganism addition treatment (FMn) were tested for composting. Manganese(II)-coupled microorganisms improved lignin degradation: FMn > Mn > F > CK. They increased the lignin loss rate from 25.54 % to 42.61 %. Laccase activity increased from 3.45 to 43.74 U/g and manganese peroxidase activity increased from 145.52 to 264.91 U/g. And gene abundance was increased. Microbial community structure and dominant genera changed. Structural equations support the idea that functional microorganisms coupled with manganese can modify physicochemical indices, thereby regulating gene expression and enhancing enzyme activity. Furthermore, the stimulation of fungal growth and increased extracellular laccase and manganese peroxidase activities can affect the degradation of lignin. This study provides new insights and theoretical support for efficient lignin degradation and efficient resource utilization of compost products.
Collapse
Affiliation(s)
- Weiye Tao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junping Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yiming Hou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Bingqi Shen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yutong Tang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Han Y, Zhang Y, Yang Z, Zhang Q, He X, Song Y, Tian L, Wu H. Improving Aerobic Digestion of Food Waste by Adding a Personalized Microbial Inoculum. Curr Microbiol 2024; 81:277. [PMID: 39028528 DOI: 10.1007/s00284-024-03796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
In the context of China's garbage classification policy, on-site aerobic food waste (FW) digestion is crucial for reducing transportation and disposal costs. The efficiency of this process is largely determined by the microbial community structure and its functions. Therefore, this study aimed to analyze the impact of a personalized microbial consortium (MCM) on the efficiency of aerobic FW digestion and to reveal the underlying mechanisms. An MCM, sourced from naturally degrading FW, was selected to enrich degrading bacteria with relatively high hydrolyzing ability. The functionality of the MCM was evaluated by tracing the successions of microbial communities, and comparing the differences in the forms of organic compounds, metabolic functions, and hydrolase activities. X-ray photoelectron spectroscopy demonstrated that the MCM metabolized faster, and produced more acidic metabolites. Metagenomic analysis indicated that FW inoculated with the personalized MCM increased abundance of Bacillaceae producing hydrolysis enzymes and promoted glycolysis metabolic pathways, enhancing energy generation for metabolism, compared to the commercial effective bacterial agent. This paper provides both theoretical and practical evidence for the improvement of biochemical processor of FW with the personalized MCM, which has promising application prospects and economic value.
Collapse
Affiliation(s)
- Ying Han
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, P.R. China.
- Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, YanShan University, Qinhuangdao, 066004, Hebei, P.R. China.
| | - Yuman Zhang
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, P.R. China
| | - Zijian Yang
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, P.R. China
| | - Qingrui Zhang
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, P.R. China
- Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, YanShan University, Qinhuangdao, 066004, Hebei, P.R. China
| | - Xin He
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, 066102, Hebei, P.R. China
| | - Yu Song
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, 066102, Hebei, P.R. China
| | - Lili Tian
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, P.R. China
- Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, YanShan University, Qinhuangdao, 066004, Hebei, P.R. China
| | - Hao Wu
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, P.R. China
- Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, YanShan University, Qinhuangdao, 066004, Hebei, P.R. China
| |
Collapse
|
10
|
Xiao R, Li L, Zhang Y, Fang L, Li R, Song D, Liang T, Su X. Reducing carbon and nitrogen loss by shortening the composting duration based on seed germination index (SCD@GI): Feasibilities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172883. [PMID: 38697528 DOI: 10.1016/j.scitotenv.2024.172883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Addressing carbon (C) and nitrogen (N) losses through composting has emerged as a critical environmental challenge recently, and how to mitigate these losses has been a hot topic across the world. As the emissions of carbonaceous and nitrogenous gases were closely correlated with the composting process, the feasibility of composting duration shortening on C and N loss needs to be explored. Therefore, the goal of this paper is to find evidence-based approaches to reduce composting duration, utilizing the seed germination index as a metric (SCD@GI), for assessing its efficiency on C and N loss reductions as well as compost quality. Our findings reveal that the terminal seed germination index (GI) frequently surpassed the necessary benchmarks, with a significant portion of trials achieving the necessary GI within 60 % of the standard duration. Notably, an SCD@GI of 80 % resulted in a reduction of CO2 and NH3 by 21.4 % and 21.9 %, respectively, surpassing the effectiveness of the majority of current mitigation strategies. Furthermore, compost quality, maturity specifically, remained substantially unaffected at a GI of 80 %, with the composting process maintaining adequate thermophilic conditions to ensure hygienic quality and maturity. This study also highlighted the need for further studies, including the establishment of uniform GI testing standards and comprehensive life cycle analyses for integrated composting and land application practices. The insights gained from this study would offer new avenues for enhancing C and N retention during composting, contributing to the advancement of high-quality compost production within the framework of sustainable agriculture.
Collapse
Affiliation(s)
- Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Lan Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yanye Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| | - Dan Song
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing 401147, China
| | - Tao Liang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China.
| |
Collapse
|
11
|
He J, Zeng G, Liu Z, Guo Z, Zhang W, Li Y, Zhou Y, Xu H. Replacing traditional nursery soil with spent mushroom substrate improves rice seedling quality and soil substrate properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39625-39636. [PMID: 38824472 DOI: 10.1007/s11356-024-33723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Currently, large quantities of spent mushroom substrate (SMS) are produced annually. Because SMS has high water retention and nutrients, it has great potential to replace traditional topsoil for raising seedlings in agricultural production. However, few studies have examined the effects of substituting SMS for paddy soil on rice seedling growth and soil nutrients. SMS was mixed with rice soil in different proportions (20%, 50%, and 80%), and chemical fertilizer, organic fertilizer, and peat substrate were added in addition to equivalent nitrogen as a traditional seedling nursery method for comparison. Compared to traditional paddy soil (CK), the seedling qualities of the three SMS ratio treatments were all higher. Adding SMS at different ratios promoted rice seedling root growth, elevated the soluble protein concentration, and amplified the superoxide dismutase (SOD) enzymatic action in rice seedlings. Total porosity and aeration porosity of the soil increased by 17.40% and 32.90%, respectively. Soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) increased by 21.26-118.48%, 50.44-71.68%, and 23.08-80.17%, respectively. Besides, the relative abundance of Bacillus, Bacteroidetes, and other bacteria as well as the abundance of Ascomycota were all significantly increased. Adding 50% SMS increased the abundance of Pseudomonas by 8.42 times. The seedling quality of the 50% SMS treatment was even higher than chemical fertilizer and organic fertilizer treatments, only second to the peat substrate treatment. In summary, partial substitution of paddy soil with SMS can ameliorate substrate properties, improve seedling quality, and increase microbial diversity, indicating the suitability of SMS as a replacement for rice soil in seedling substrates. The 50% SMS ratio is the best. This study provides a basis for SMS to replace traditional rice soil in seedling cultivation.
Collapse
Affiliation(s)
- Jinfeng He
- College of Environment and Ecology, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China
| | - Guiyang Zeng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Zhihui Liu
- College of Environment and Ecology, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China
| | - Zhangliang Guo
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Wenzhuo Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Yici Li
- College of Environment and Ecology, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China
| | - Huaqin Xu
- College of Environment and Ecology, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China.
| |
Collapse
|
12
|
Zhuo Cai J, Lan Yu Y, Biao Yang Z, Xun Xu X, Chun Lv G, Lian Xu C, Yin Wang G, Qi X, Li T, Bon Man Y, Hung Wong M, Cheng Z. Synergistic improvement of humus formation in compost residue by fenton-like and effective microorganism composite agents. BIORESOURCE TECHNOLOGY 2024; 400:130703. [PMID: 38631654 DOI: 10.1016/j.biortech.2024.130703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Improving the humification of compost through a synergistic approach of biotic and abiotic methods is of great significance. This study employed a composite reagent, comprising Fenton-like agents and effective microorganisms (EM) to improve humification. This composite reagent increased humic-acid production by 37.44 %, reaching 39.82 g kg-1, surpassing the control group. The composite reagent synergistically promoted micromolecular fulvic acid and large humic acid production. Collaborative mechanism suggests that Fenton-like agents contributed to bulk residue decomposition and stimulated the evolution of microbial communities, whereas EMs promoted highly aromatic substance synthesis and adjusted the microbial community structure. Sequencing analysis indicates the Fenton-like agent initiated compost decomposition by Firmicutes, and EM reduced the abundance of Virgibacillus, Lentibacillus, and Alcanivorax. Applied as an organic fertilizer in Brassica chinensis L. plantations, the composite reagent considerably improved growth and photosynthetic pigment content. This composite reagent with biotic and abiotic components provides a learnable method for promoting humification.
Collapse
Affiliation(s)
- Jun Zhuo Cai
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Ying Lan Yu
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Zhan Biao Yang
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Xiao Xun Xu
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Guo Chun Lv
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Chang Lian Xu
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Gui Yin Wang
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Xin Qi
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Ting Li
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Yu Bon Man
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Zhang Cheng
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
13
|
Zhou S, He Y, Jiao M, Li Q, Ren X, Awasthi MK, Li R, Zhang Z. Simultaneous mitigation of greenhouse gases and ammonia by boric acid during composting: Emission reduction potentials and microbial mechanisms. JOURNAL OF CLEANER PRODUCTION 2024; 451:142139. [DOI: 10.1016/j.jclepro.2024.142139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
14
|
Huang J, Jiang Z, Li A, Jiang F, Tang P, Cui J, Feng W, Fu C, Lu Q. Role of keystone drives polycyclic aromatic hydrocarbons degradation and humification especially combined with aged contaminated soil in co-composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120323. [PMID: 38417356 DOI: 10.1016/j.jenvman.2024.120323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024]
Abstract
Accumulation of persistent organic pollutants polycyclic aromatic hydrocarbons (PAHs) in soil has become a global problem. Composting is considered one of the more economical methods of soil remediation and is important for the resourceful use of wastes. Agroforestry waste is produced in huge amounts and is utilized at low rates, hence there is an urgent need to manage it. Here, leaf (LVS) or rice straw (SVS) was co-composting with aged contaminated soil to investigate bacteria interaction to PAHs degradation and humus formation. The degradation rate of high molecular weight PAHs (HMW-PAHs) in LVS and SVS reached 58.9% and 52.5%, and the low molecular weight PAHs (LMW-PAHs) were 77.5% and 65%. Meanwhile, the humus increased by 44.8% and 60.5% in LVS and SVS at the end of co-composting. The topological characteristics and community assembly of the bacterial community showed that LVS had higher complexity and more keystones than SVS, suggesting that LVS might more beneficial for the degradation of PAHs. The stability of the co-occurrence network and stochastic processes (dispersal limitation) dominated community assembly made SVS beneficial for humus formation. Mantel test and structural equation models indicated that the transformation of organic matter was important for PAHs degradation and humus formation. Degradation of HMW-PAHs led to bacterial succession, which affected the formation of precursors and ultimately increased the humus content. This study provided potential technology support for improving the quality of agroforestry organic waste composting and degrading PAHs in aged contaminated soil.
Collapse
Affiliation(s)
- Jiayue Huang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ziwei Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Anyang Li
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Fangzhi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Pengfei Tang
- Heilongjiang Provincial Ecological Environment Monitoring Center, Harbin, 150056, China
| | - Jizhe Cui
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Wenxuan Feng
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Chang Fu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Qian Lu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
15
|
Zhang S, Zhang Q, Gao H, Wang L, Song C, Tang G, Li X, Hu X. Effects of adding steel slag on humification and characteristics of bacterial community during phosphate-amended composting of municipal sludge. BIORESOURCE TECHNOLOGY 2024; 394:130229. [PMID: 38135223 DOI: 10.1016/j.biortech.2023.130229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
This study aimed to investigate the effects of different proportions (0%, 5%, 7.5%, and 10%) of steel slag (SS) on humification and bacterial community characteristics during phosphate-amended composting of municipal sludge. Compared with adding KH2PO4 alone, co-adding SS significantly promoted the temperature, pH, nitrification, and critical enzyme activities (polyphenol oxidase, cellulase, laccase); especially organic matter (OM) degradation rate (25.5%) and humification degree (1.8) were highest in the 5%-SS treatment. Excitation-emission matrix-parallel factor confirmed that co-adding SS could promote the conversion of protein-like substances or microbial by-products into humic-like substances. Furthermore, adding 5%-SS significantly improved the relative abundances of Actinobacteria, Firmicutes and the genes related to carbohydrate and amino acid metabolism, and enhanced the interactions of bacterial community in stability and complexity. The partial least squares path model indicated that OM was the primary factor affecting humification. These results provided a promising strategy to optimize composting of municipal sludge via SS.
Collapse
Affiliation(s)
- Shihua Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China.
| | - Qicheng Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Heyu Gao
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Liujian Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Chunqing Song
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Gang Tang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Xiumin Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Xiaobing Hu
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| |
Collapse
|
16
|
Xing CM, He ZL, Lan T, Yan B, Zhao Q, Wu QL, Wang HZ, Wang CX, Guo WQ. Enhanced humus synthesis from Chinese medicine residues composting by lignocellulose-degrading bacteria stimulation: Upregulation of key enzyme activity and neglected indirect effects on humus formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167754. [PMID: 37879479 DOI: 10.1016/j.scitotenv.2023.167754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Chinese medicine residues (CMHRs) resource is attracting widespread attention, as it is expected to be produced into Humus-rich fertilizer for soil application. This study aimed to promote effective humus (HS) production through lignocellulose-degrading bacteria (LDB) addition and explore the biological regulation mechanism of LDB affecting lignocellulose-to-humus conversion. The results showed higher HS production was achieved, with 109.73 and 111.44 g·kg-1, and HA/FA was raised by 12.70-16.02 % in compost products by LDB addition stimulation. Significant upregulation of β-glucanase and xylanase activities catalyzed higher decomposition of lignocellulose toward more HS potential precursors supply. Furthermore, exogenous LDB intervention induced microbial community restructure and microbial network establishment via enriching synergism functional bacteria, i.e., Thermobifida, Paenibacillus, Nonomuraea, etc. Mantel test results showed that it was variation of cellulose, hemicellulose and HS that affected microbial community succession (p < 0.01, r > 0.6), which represented the positive action of LDB addition stimulation on HS synthesis upregulation. Further exploration suggested LDB had an indirect effect on HS formation by enhanced lignin and hemicellulose conversion based on the Random Forest model and Partial least-squares path modeling results. This research provides new insights into the trigger effects of LDB introduction on upregulating HS synthesis and is expected to propose new perspectives for HS efficient production in CMHRs composting.
Collapse
Affiliation(s)
- Chuan-Ming Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Lin He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tian Lan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bo Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hua-Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Cai-Xia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
17
|
Wang HT, Gan QY, Li G, Zhu D. Effects of Zinc Thiazole and Oxytetracycline on the Microbial Metabolism, Antibiotic Resistance, and Virulence Factor Genes of Soil, Earthworm Gut, and Phyllosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:160-170. [PMID: 38148496 DOI: 10.1021/acs.est.3c06513] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Pesticides and antibiotics are believed to increase the incidence of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs), constituting a serious threat to global health. However, the impact of this combined pollution on the microbiome and that of the related ARGs and VFGs on soil-plant-animal systems remain unknown. In this study, a 60-day microcosm experiment was conducted to reveal the effects of zinc thiazole (ZT) and oxytetracycline (OTC) on microbial communities, antibiotic resistomes, and virulence factors in soil, earthworm gut, and phyllosphere samples using metagenomics. ZT exposure perturbed microbial communities and nutrient metabolism and increased the abundance of ARGs and VFGs in the gut. Combined exposure changed the profiles of ARGs and VFGs by decreasing microbial diversity in the phyllosphere. Host-tracking analysis identified some genera, such as Citrobacter and Aeromonas, as frequent hosts of ARGs and VFGs in the gut. Notably, some co-occurrence patterns of ARGs and MGEs were observed on the metagenome-assembled contigs. More importantly, ZT markedly increased the abundance of potentially drug-resistant pathogens Acinetobacter soli and Acinetobacter junii in the phyllosphere. Overall, this study expands our current understanding of the spread of ARGs and VFGs in soil-plant-animal systems under pollutant-induced stress and the associated health risks.
Collapse
Affiliation(s)
- Hong-Tao Wang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Qiu-Yu Gan
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
18
|
Lu Z, Cheng X, Xie J, Li Z, Li X, Jiang X, Zhu D. Iron-based multi-carbon composite and Pseudomonas furukawaii ZS1 co-affect nitrogen removal, microbial community dynamics and metabolism pathways in low-temperature aquaculture wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119471. [PMID: 37913618 DOI: 10.1016/j.jenvman.2023.119471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Aerobic denitrification is the key process in the elimination of nitrogen from aquaculture wastewater, especially for wastewater with high dissolved oxygen and low carbon/nitrogen (C/N) ratio. However, a low C/N ratio, especially in low-temperature environments, restricts the activity of aerobic denitrifiers and decreases the nitrogen elimination efficiency. In this study, an iron-based multi-solid carbon source composite that immobilized aerobic denitrifying bacteria ZS1 (IMCSCP) was synthesized to treat aerobic (DO > 5 mg/L), low temperature (<15 °C) and low C/N ratio (C/N = 4) aquaculture wastewater. The results showed that the sequencing batch biofilm reactor (SBBR) packed with IMCSCP exhibited the highest nitrogen removal performance, with removal rates of 95.63% and 85.44% for nitrate nitrogen and total nitrogen, respectively, which were 33.03% and 30.75% higher than those in the reactor filled with multi-solid carbon source composite (MCSC). Microbial community and network analysis showed that Pseudomonas furukawaii ZS1 successfully colonized the SBBR filled with IMCSCP, and Exiguobacterium, Cellulomonas and Pseudomonas were essential for the nitrogen elimination. Metagenomic analysis showed that an increase in gene abundance related to carbon metabolism, nitrogen metabolism, extracellular polymer substance synthesis and electron transfer in the IMCSCP, enabling denitrification in the SBBR to be achieved via multiple pathways. The results of this study provided new insights into the microbial removal mechanism of nitrogen in SBBR packed with IMCSCP at low temperatures.
Collapse
Affiliation(s)
- Zhuoyin Lu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China.
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhifei Li
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Xiangyang Li
- Guanghuiyuan Hydraulic Construction Engineering Co., Ltd., Shenzhen, 518020, China; Guangdong Engineering Technology Research Center of Smart and Ecological River, Guangzhou, 510640, China
| | - Xiaotian Jiang
- Guanghuiyuan Hydraulic Construction Engineering Co., Ltd., Shenzhen, 518020, China
| | - Dantong Zhu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
19
|
Cao Y, Huang R, Li T, Pan D, Shao S, Wu X. Effect of antibiotics on the performance of moving bed biofilm reactor for simultaneous removal of nitrogen, phosphorus and copper(II) from aquaculture wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115590. [PMID: 37839187 DOI: 10.1016/j.ecoenv.2023.115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Co-existence of NO3--N, antibiotics, phosphorus (P), and Cu2+ in aquaculture wastewater has been frequently detected, but simultaneous removal and relationship between enzyme and pollutants removal are far from satisfactory. In this study, simultaneous removal of NO3--N, P, antibiotics, and Cu2+ by moving bed biofilm reactor (MBBR) was established. About 95.51 ± 3.40% of NO3--N, 61.24 ± 3.51% of COD, 18.74 ± 1.05% of TP, 88% of Cu2+ were removed synchronously in stage I, and antibiotics removal in stages I-IV was 73.00 ± 1.32%, 79.53 ± 0.88%, 51.07 ± 3.99%, and 33.59 ± 2.73% for tetracycline (TEC), oxytetracycline (OTC), chlortetracycline hydrochloride (CTC), sulfamethoxazole (SMX), respectively. The removal kinetics and toxicity of MBBR effluent were examined, indicating that the first order kinetic model could better reflect the removal of NO3--N, TN, and antibiotics. Co-existence of multiple antibiotics and Cu2+ was the most toxicity to E. coli growth. Key enzyme activity, reactive oxygen species (ROS) level, and its relationship with TN removal were investigated. The results showed that enzymes activities were significantly different under the co-existence of antibiotics and Cu2+. Meanwhile, different components of biofilm were extracted and separated, and enzymatic and non-enzymatic effects of biofilm were evaluated. The results showed that 70.00%- 94.73% of Cu2+ was removed by extracellular enzyme in stages I-V, and Cu2+ removal was mainly due to the action of extracellular enzyme. Additionally, microbial community of biofilm was assessed, showing that Proteobacteria, Bacteroidetes, and Gemmatimonadetes played an important role in the removal of NO3--N, Cu2+, and antibiotics at the phylum level. Finally, chemical bonds of attached and detached biofilm were characterized by X-ray photoelectron spectroscopy (XPS), and effect of nitrogen (N) and P was proposed under the co-existence of antibiotics and Cu2+. This study provides a theoretical basis for further exploring the bioremediation of NO3--N, Cu2+, and antibiotics in aquaculture wastewater.
Collapse
Affiliation(s)
- Ying Cao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Ruiheng Huang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Tenghao Li
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| |
Collapse
|
20
|
Lu Q, Jiang Z, Tang P, Yu C, Jiang F, Huang J, Feng W, Wei Z. Identify the potential driving mechanism of reconstructed bacterial community in reduce CO 2 emissions and promote humus formation during cow manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118896. [PMID: 37666131 DOI: 10.1016/j.jenvman.2023.118896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
The mineralization of organic components releases CO2 during composting, which not only leads to the loss of organic carbon, but has a direct negative impact on the environment. Malonic acid as a competitive inhibitor of succinate dehydrogenase could affect the tricarboxylic acid (TCA) cycle and reduce CO2 emissions. However, the bacterial interaction and organic component transformation has less known how to malonic acid reduce CO2 and improve of humus synthesis in complex composting. The aim of this study was to investigated the malonic acid on organic carbon sequestration and transforming cow manure waste into products with high humus content. Humus content was elevated by 16.8% and cumulative CO2 emissions (30 d)d reduced by 13.6% after malonic acid addition compared to the CK. SparCC analysis of bacterial interaction presented that the network complexity and stability was more higher with malonic acid addition, while a greater concentration of keystones and their ecological metabolic functions was observed, suggesting they weaken the influence of TCA cycle inhibition by enhancing interactions. PICRUSt predictions indicate that malonic acid might enhance humus content by promoting the synthesis of polyphenols and polymerization with amino acids. This study investigated the potential mechanism of regulators to enhance quality and reduce emissions during humification process, providing a new strategy for the resource utilization of organic solid waste.
Collapse
Affiliation(s)
- Qian Lu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ziwei Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Pengfei Tang
- Heilongjiang Provincial Ecological Environment Monitoring Center, Harbin, 150056, China
| | - Chunjing Yu
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Fangzhi Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Jiayue Huang
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Wenxuan Feng
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Zimin Wei
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
21
|
Wang Y, Zhang C, Zhao Y, Wei Z, Li J, Song C, Chen X, Zhao M. Lignite drove phenol precursors to participate in the formation of humic acid during chicken manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162609. [PMID: 36871714 DOI: 10.1016/j.scitotenv.2023.162609] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
This study set out to explore the impact of lignite on preserving organic matter and promoting the formation of humic acid (HA) during chicken manure composting. Composting test was carried out for control (CK), 5 % lignite addition treatment (L1), 10 % addition treatment (L2) and 15 % addition treatment (L3). The results demonstrated that lignite addition effectively reduced the loss of organic matter. The HA content of all lignite-added groups was higher than that of CK, and the highest was 45.44 %. L1 and L2 increased the richness of bacterial community. Network analysis showed higher diversity of HA-associated bacteria in L2 and L3 treatments. Structural equation models revealed that reducing sugar and amino acid contributed to the formation of HA during CK and L1 composting, while polyphenol contributed more to the HA formation during L2 and L3 composting. Furthermore, lignite addition also could promote the direct effect of microorganisms on HA formation. Therefore, the addition of lignite had practical significance to enhance compost quality.
Collapse
Affiliation(s)
- Yumeng Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China,; College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Chunhao Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yue Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China,.
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xiaomeng Chen
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Meiyang Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
22
|
Piao M, Li A, Du H, Sun Y, Du H, Teng H. A review of additives use in straw composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57253-57270. [PMID: 37012566 DOI: 10.1007/s11356-023-26245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 05/10/2023]
Abstract
Straw composting is not only a process of decomposition and re-synthesis of organic matter, but also a process of harmless treatment, avoiding air pollution caused by straw burning. Many factors, including raw materials, humidity, C/N, and microbial structure, may determine the composting process and the quality of final product. In recent years, many researches have focused on composting quality improvement by adding one or more exogenous substances, including inorganic additives, organic additives, and microbial agents. Although a few review publications have compiled the research on the use of additives in composting, none of them has specifically addressed the composting of crop straw. Additives used in straw composting can increase degradation of recalcitrant substances and provide ideal living surroundings for microorganism, and thus reduce nitrogen loss and promote humus formation, etc. This review's objective is to critically evaluate the impact of various additives on straw composting process, and analyze how these additives enhance final quality of composting. Furthermore, a vision for future perspectives is provided. This paper can serve as a reference for straw composting process optimization and composting end-product improvement.
Collapse
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Engineering, Jilin Normal University, Siping, China
| | - Ang Li
- College of Engineering, Jilin Normal University, Siping, China
| | - Huishi Du
- College of Tourism and Geographical Science, Jilin Normal University, Siping, China
| | - Yuwei Sun
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Engineering, Jilin Normal University, Siping, China
| | - Hongxue Du
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China.
- College of Engineering, Jilin Normal University, Siping, China.
| |
Collapse
|
23
|
Huang J, Xiao Y, Chen B. Nutrients removal by Olivibacter jilunii immobilized on activated carbon for aquaculture wastewater treatment: ppk1 gene and bacterial community structure. BIORESOURCE TECHNOLOGY 2023; 370:128494. [PMID: 36526116 DOI: 10.1016/j.biortech.2022.128494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In this study, immobilized biological activated carbon (IBAC) mediated with Olivibacter jilunii (strain PAO-9) was utilized to treat aquaculture wastewater for nutrients removal. IBAC with strain PAO-9 could load the greatest ppk1 gene copy numbers (129524.6) per gram on activated carbon at 28 °C for 2 d in 120 rpm of stirring speed and 2 d in stationary condition. Moreover, the results about the nutrients removal and microbiology community structure showed that strain PAO-9 on IBAC could alter the structure and diversity of microbial communities and then promoted to remove the total phosphorus and total nitrogen of eel aquaculture wastewater. The highest total phosphorus, chemical oxygen demand, ammonia and total nitrogen of the wastewater treated by strain PAO-9 on IBAC were 96.1 %, 98.0 %, 100.0 % and 97.4 %, respectively. In all, O. jilunii PAO-9 immobilized activated carbon was a potential and effective approach to remove the nutrients of eel aquaculture wastewater.
Collapse
Affiliation(s)
- Jing Huang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 35003, China
| | - Yanchun Xiao
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 35003, China
| | - Biao Chen
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 35003, China.
| |
Collapse
|