1
|
Shangguan J, Yang N, Zhang L, Liu J, Xia X, Xu B. Employing Chlorella pyrenoidosa in eco-friendly acetylsalicylic acid degradation: Insights from physiology and transcriptomics. BIORESOURCE TECHNOLOGY 2025; 428:132444. [PMID: 40139467 DOI: 10.1016/j.biortech.2025.132444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/04/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Emerging contaminants, often present at low concentrations, are of increasing concern due to their persistence and potential hazards. Chlorella pyrenoidosa has shown significant potential for removing these emerging contaminants from aquatic environments. In this study, C. pyrenoidosa effectively removed and degraded acetylsalicylic acid (ASA) at concentrations ranging from 2.2 to 22.1 mg/L, achieving a removal efficiency of 98.8 %, with 89.0 % of this removal attributed to biodegradation. ASA treatment also significantly promoted cellular growth, enhanced protein and soluble sugar accumulation, and improved both photosynthetic and respiratory activities. At 22.1 mg/L ASA, protein content increased by 51.9 %, and soluble sugar content rose by 34.8 %. Transcriptomic analysis revealed that ASA promoted carbon metabolism and nitrogen metabolism. These results highlight C. pyrenoidosa as a promising, eco-friendly solution for the removal of ASA, offering potential applications in sustainable wastewater treatment and resource recovery.
Collapse
Affiliation(s)
- Jingjing Shangguan
- Key Lab of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, 88 Haijun Road, Qingdao 266404, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Road, Aoshanwei Town, Jimo, Qingdao 266237, China; College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao 266404, China.
| | - Na Yang
- Key Lab of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, 88 Haijun Road, Qingdao 266404, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Road, Aoshanwei Town, Jimo, Qingdao 266237, China.
| | - Litao Zhang
- Key Lab of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, 88 Haijun Road, Qingdao 266404, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Road, Aoshanwei Town, Jimo, Qingdao 266237, China.
| | - Jianguo Liu
- Key Lab of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, 88 Haijun Road, Qingdao 266404, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Road, Aoshanwei Town, Jimo, Qingdao 266237, China; Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347 Shandong, China.
| | - Xiuluan Xia
- Qingdao Langyatai Group Co., Ltd, Qingdao 266500, China.
| | - Bingzheng Xu
- Qingdao Langyatai Group Co., Ltd, Qingdao 266500, China.
| |
Collapse
|
2
|
He X, Liu D, Teng Y, Wang H, Wu Q, Wang W, Ren J, Zhu L. Construction of a microalgal-fungal spore co-culture system for the treatment of wastewater containing Zn(II) and estrone: Pollutant removal and microbial biochemical reactions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124221. [PMID: 39908605 DOI: 10.1016/j.jenvman.2025.124221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
The co-culture system of Chlorella sorokiniana and Aspergillus oryzae has demonstrated exceptional tolerance and efficiency in the removal of pollutants from swine manure. This study evaluates the ability of the co-culture system to remove Zn(II) and estrone, while assessing the impact of these pollutants on the system's overall functionality. Results indicated that co-cultivation achieved higher biomass accumulation, peaking at 0.88 g/L after 96 h. Increasing estrone exposure concentration reduced photosynthetic activity and chlorophyll content, whereas Zn(II) exposure initially enhanced and later inhibited chlorophyll synthesis. Co-cultivation secreted extracellular polymeric substances, including protein-like and humus-like substances, to alleviate environmental stress and form algal-fungal community. After 96 h of cultivation, the removal efficiencies reached 86.44% for 1.5 mg/L Zn(II) and 84.55% for 20 mg/L estrone. The Quantitative Structure Activity Relationship model revealed a reduction in the ecotoxicity of estrone intermediate products to varying degrees. Metabolomics analysis showed that exposure to estrone and Zn(II) significantly boosted the production of Gibberellic acid, Indole-3-acetic acid, and Zeatin riboside in Chlorella sorokiniana, while reducing Abscisic Acid levels. Furthermore, the exposure led to an increase in various metabolites in the Tricarboxylic acid cycle of the co-cultivation system, influencing the synthesis and metabolism of key biochemical components like carbohydrates, lipids, and proteins. These findings elucidate the biochemical responses of Chlorella sorokiniana-Aspergillus oryzae co-culture system to pollutants and provide insights into its potential application in the treatment of wastewater containing endocrine disrupting chemicals and heavy metals.
Collapse
Affiliation(s)
- Xiaoman He
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Dongyang Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China; Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Yue Teng
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Hanzhi Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Wei Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Jingzheng Ren
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
3
|
Nordio R, Belachqer-El Attar S, Clagnan E, Sánchez-Zurano A, Pichel N, Viviano E, Adani F, Guzmán JL, Acién G. Exploring microbial growth dynamics in a pilot-scale microalgae raceway fed with urban wastewater: Insights into the effect of operational variables. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122385. [PMID: 39243421 DOI: 10.1016/j.jenvman.2024.122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Microalgae-based wastewater treatment is a promising technology efficient for nutrient recycling and biomass production. Studies continuously optimize processes to reduce costs and increase productivity. However, changes in the operational conditions affect not only biomass productivity but the dynamics of the overall microbial community. This study characterizes a microalgae culture from an 80 m2 pilot-scale raceway reactor fed with untreated urban wastewater. Operational conditions such as pH, dissolved oxygen control strategies (On-off, PI, Event-based, no control), and culture height were varied to assess microbial population changes. Results demonstrate that increased culture height significantly promotes higher microalgal and bacterial diversity. pH, dissolved oxygen and culture height highly affects nitrifying bacteria activity and nitrogen accumulation. Furthermore, the system exhibited high disinfection capability with average Logarithmic Reduction Values (LRV) of 3.36 for E. coli and 2.57 for Clostridium perfringens. Finally, the fungi species detected included Chytridiomycota and Ascomycota, while purple photosynthetic bacteria were also found in significant abundance within the medium.
Collapse
Affiliation(s)
- Rebecca Nordio
- Department of Chemical Engineering, University of Almeria, 04120, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain.
| | - Solaima Belachqer-El Attar
- Department of Chemical Engineering, University of Almeria, 04120, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain
| | - Elisa Clagnan
- Gruppo Ricicla Labs, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | | | - Natalia Pichel
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, Madrid, Spain
| | - Emanuele Viviano
- Department of Chemical Engineering, University of Almeria, 04120, Almería, Spain
| | - Fabrizio Adani
- Gruppo Ricicla Labs, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - José Luis Guzmán
- Department of Informatics, University of Almeria, 04120, Almería, Spain
| | - Gabriel Acién
- Department of Chemical Engineering, University of Almeria, 04120, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain
| |
Collapse
|
4
|
Xing D, Wang H, Li S, Jin C, Zhao Y, Gao M, Guo L. Stable isotope labeling and functional gene prediction elucidate the carbon metabolism in fermentative bacteria and microalgae coupling system. WATER RESEARCH 2024; 263:122153. [PMID: 39079194 DOI: 10.1016/j.watres.2024.122153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/24/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024]
Abstract
The application of the fermentative bacteria and microalgae coupling system in the wastewater treatment has been studied, but there remains few knowledge regarding the organic and inorganic carbon metabolism within this system. In this study, the carbon metabolism of microalgae and fermentative bacteria was elucidated by 13C stable isotope labeling and functional gene prediction, respectively. The 13C glucose and 13C NaHCO3 were used as stable isotope tracers to clarify the organic and inorganic carbon metabolism of microalgae, indicating that approximately 71.5 % of the Acetyl-CoA in microalgae was synthesized from organic carbon sources, while 26.8 % was synthesized through the utilization of inorganic carbon sources. Inorganic carbon sources can enhance the activity of photosynthetic system and facilitate the Calvin cycle. Considering the adequate organic carbon sources and insufficient inorganic carbon sources in the fermentative bacteria and microalgae coupling system, NaHCO3 was added to improve carbon utilization of microalgae. The maximum microalgal lipid yield reached 1130.37 mg/L with 1000 mg/L NaHCO3 supplementation. Functional gene prediction was used to analysis the effect of various carbon composition on the bacterial carbon metabolism. Notably, the additional inorganic carbon sources increased the abundance of bacterial functional genes associated with the fermentation and acetic acids synthesis, which was advantageous for VFAs production and further promoted microalgae growth. This study can gain a deeper understanding of microbial metabolic mechanisms during the operation of fermentative bacteria and microalgae system, and improve its sustained operational stability.
Collapse
Affiliation(s)
- Dongxu Xing
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shangzong Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
5
|
Wang S, Cheng X, Shi L, Liu K, Yang Z, Jia Q, Xiang X. Insights into the response mechanisms of Tetradesmus obliquus to aged polylactic acid and tetracycline exposure via transcriptome analysis and physiological evaluations. CHEMOSPHERE 2024; 364:143120. [PMID: 39159767 DOI: 10.1016/j.chemosphere.2024.143120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Microplastics (MPs) and antibiotics, identified as emerging pollutants, are extensively prevalent in aquatic environments and display prolonged durability. Unlike conventional plastics, biodegradable plastics are more susceptible to decomposition in the environment, resulting in the generation of microplastics and posing potential risks to the aquatic ecosystems. In this study, we assessed growth inhibition, chlorophyll a content, malondialdehyde content (MDA), and antioxidant enzyme activities. These measurements were integrated with transcriptome analysis to explore the response mechanisms of virgin and aged polylactic acid (vPLA and aPLA) and tetracycline (TC) following 14-day exposure to Tetradesmus obliquus, either individually or in combination. The findings indicated that exposure to vPLA did not significantly impact the growth of T. obliquus. Conversely, aPLA demonstrated growth-promoting effects on T. obliquus, particularly in the latter incubation stages. Moreover, a 14-day exposure significantly increased the chlorophyll a content and the activities of superoxide dismutase (SOD), catalase glutathione (CAT) and glutathione S-transferase (GST) within the algal cells. Apart from 1 mg L-1, the TC concentrations of 2.5, 5.0, and 10 mg L-1 exhibited significant toxic effects on T. obliquus, including growth inhibition, decreased chlorophyll a content, elevated activities of SOD, CAT, and GST, and increased MDA levels. Exposure to a combination of 300 mg L-1 aPLA and 5.0 mg L-1 TC, compared to solely 5 mg L-1 TC, demonstrated a notable reduction in TC toxicity to T. obliquus in the presence of aPLA. This was indicated by elevated algal cell density and chlorophyll a content, as well as a decrease in MDA content. Transcriptome analysis indicated an enrichment of differentially expressed genes (DEGs) in pathways linked to porphyrin metabolism, photosynthesis, carbon fixation, and metabolism within the aPLA + TC combined exposure. The study aid in expanding our knowledge of the potential ecological risks posed by biodegradable plastics and accompanying pollutants in aquatic environments.
Collapse
Affiliation(s)
- Shihao Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Xinfeng Cheng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, Anhui, China; School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| | - Lina Shi
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Kexin Liu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Zhifu Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Qina Jia
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - XianLing Xiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, Anhui, China; School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
6
|
Rawindran H, Alam MM, Sahrin NT, Raksasat R, Leong WH, Liew CS, Supramaniam U, Lim JW, Usman A, Tong WY, Suresh S, Khoo KS. Recent advancements in harnessing biodiesel from microalgae through attached growth systems. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 58:103205. [DOI: 10.1016/j.bcab.2024.103205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
7
|
Yun JH, Lee H, Nam JW, Ko M, Park J, Lee DH, Lee SG, Kim HS. Unlocking synergies: Harnessing the potential of biological methane sequestration through metabolic coupling between Methylomicrobium alcaliphilum 20Z and Chlorella sp. HS2. BIORESOURCE TECHNOLOGY 2024; 399:130607. [PMID: 38499203 DOI: 10.1016/j.biortech.2024.130607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
A halotolerant consortium between microalgae and methanotrophic bacteria could effectively remediate in situ CH4 and CO2, particularly using saline wastewater sources. Herein, Methylomicrobium alcaliphilum 20Z was demonstrated to form a mutualistic association with Chlorella sp. HS2 at a salinity level above 3.0%. Co-culture significantly enhanced the growth of both microbes, independent of initial inoculum ratios. Additionally, increased methane provision in enclosed serum bottles led to saturated methane removal. Subsequent analyses suggested nearly an order of magnitude increase in the amount of carbon sequestered in biomass in methane-fed co-cultures, conditions that also maintained a suitable cultural pH suitable for methanotrophic growth. Collectively, these results suggest a robust metabolic coupling between the two microbes and the influence of the factors other than gaseous exchange on the assembled consortium. Therefore, multi-faceted investigations are needed to harness the significant methane removal potential of the identified halotolerant consortium under conditions relevant to real-world operation scenarios.
Collapse
Affiliation(s)
- Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| | - Hyewon Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| | - Jang-Won Nam
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| | - Minji Ko
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| | - Jaehyun Park
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Dae-Hee Lee
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea; Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Seung-Goo Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
8
|
Shen XF, Xu YP, Jiang YF, Gao LJ, Tong XQ, Gong J, Yang YF, Zeng RJ. Evaluating nutrient limitation in co-culture of Chlorella pyrenoidosa and Rhodobacter sphaeroides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167706. [PMID: 37820812 DOI: 10.1016/j.scitotenv.2023.167706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
The influence of nitrogen deficiency on microalgae-bacteria co-culture has been studied mostly with nitrogen-fixing bacteria. Photosynthetic bacteria (PSB), which are non-nitrogen-fixing bacteria, the impact of N deficiency on its co-culture with microalgae is unknown. In this study, Chlorella pyrenoidosa and Rhodobacter sphaeroides co-culture was cultivated photoheterotrophically with acetate. The impact of N starvation and different P supply levels on oil production were examined. When phosphorus was sufficient, N starvation increased the fatty acid methyl ester (FAME) content from 21.7 % to 28.2 %, and also increased the FAME yield (g CODFAME/g CODAcetate) from 0.17 to 0.22. However, the biomass and FAME productivities decreased. Sufficient phosphorus was also essential for a high growth rate and FAME productivity. Deficiencies in either N or P led to a decrease in the proportion of unsaturated FAMEs. iTRAQ analysis indicated N starvation promoted oil accumulation by driving the carbon flow to fatty acid synthesis in microalgae from co-culture. This study improves the understanding of biomass and lipid production via microalgae-PSB co-culture in photoheterotrophic cultivation. The mechanism of interaction between microalgae and bacteria needs further study.
Collapse
Affiliation(s)
- Xiao-Fei Shen
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Ya-Ping Xu
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Yi-Fan Jiang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Lin-Jun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiao-Qin Tong
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Jing Gong
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Yan-Fang Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
9
|
Wang M, Zhang W, He T, Rong L, Yang Q. Degradation of polycyclic aromatic hydrocarbons in aquatic environments by a symbiotic system consisting of algae and bacteria: green and sustainable technology. Arch Microbiol 2023; 206:10. [PMID: 38059992 DOI: 10.1007/s00203-023-03734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are genotoxic, carcinogenic, and persistent in the environment and are therefore of great concern in the environmental protection field. Due to the inherent recalcitrance, persistence and nonreactivity of PAHs, they are difficult to remediate via traditional water treatment methods. In recent years, microbial remediation has been widely used as an economical and environmentally friendly degradation technology for the treatment of PAH-contaminated water. Various bacterial and microalgal strains are capable of potentially degrading or transforming PAHs through intrinsic metabolic pathways. However, their biodegradation potential is limited by the cytotoxic effects of petroleum hydrocarbons, unfavourable environmental conditions, and biometabolic limitations. To address this limitation, microbial communities, biochemical pathways, enzyme systems, gene organization, and genetic regulation related to PAH degradation have been intensively investigated. The advantages of algal-bacterial cocultivation have been explored, and the limitations of PAHs degradation by monocultures of algae or bacteria have been overcome by algal-bacterial interactions. Therefore, a new model consisting of a "microalgal-bacterial consortium" is becoming a new management strategy for the effective degradation and removal of PAHs. This review first describes PAH pollution control technologies (physical remediation, chemical remediation, bioremediation, etc.) and proposes an algal-bacterial symbiotic system for the degradation of PAHs by analysing the advantages, disadvantages, and PAH degradation performance in this system to fill existing research gaps. Additionally, an algal-bacterial system is systematically developed, and the effects of environmental conditions are explored to optimize the degradation process and improve its technical feasibility. The aim of this paper is to provide readers with an effective green and sustainable remediation technology for removing PAHs from aquatic environments.
Collapse
Affiliation(s)
- Mengying Wang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Wenqing Zhang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Tao He
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Lingyun Rong
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Qi Yang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| |
Collapse
|
10
|
Sahu S, Kaur A, Singh G, Kumar Arya S. Harnessing the potential of microalgae-bacteria interaction for eco-friendly wastewater treatment: A review on new strategies involving machine learning and artificial intelligence. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119004. [PMID: 37734213 DOI: 10.1016/j.jenvman.2023.119004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
In the pursuit of effective wastewater treatment and biomass generation, the symbiotic relationship between microalgae and bacteria emerges as a promising avenue. This analysis delves into recent advancements concerning the utilization of microalgae-bacteria consortia for wastewater treatment and biomass production. It examines multiple facets of this symbiosis, encompassing the judicious selection of suitable strains, optimal culture conditions, appropriate media, and operational parameters. Moreover, the exploration extends to contrasting closed and open bioreactor systems for fostering microalgae-bacteria consortia, elucidating the inherent merits and constraints of each methodology. Notably, the untapped potential of co-cultivation with diverse microorganisms, including yeast, fungi, and various microalgae species, to augment biomass output. In this context, artificial intelligence (AI) and machine learning (ML) stand out as transformative catalysts. By addressing intricate challenges in wastewater treatment and microalgae-bacteria symbiosis, AI and ML foster innovative technological solutions. These cutting-edge technologies play a pivotal role in optimizing wastewater treatment processes, enhancing biomass yield, and facilitating real-time monitoring. The synergistic integration of AI and ML instills a novel dimension, propelling the fields towards sustainable solutions. As AI and ML become integral tools in wastewater treatment and symbiotic microorganism cultivation, novel strategies emerge that harness their potential to overcome intricate challenges and revolutionize the domain.
Collapse
Affiliation(s)
- Sudarshan Sahu
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Anupreet Kaur
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Shailendra Kumar Arya
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|