1
|
Shao Q, Luo T, Zhang C, Zhu K, Zhang S, Luo G. Enhanced anaerobic phenol degradation: Critical roles of glucose and hydrochar on microbial traits. BIORESOURCE TECHNOLOGY 2025; 429:132490. [PMID: 40204029 DOI: 10.1016/j.biortech.2025.132490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Phenolic wastewater poses a significant environmental threat due to its toxicity and persistence. This study examined the effects of hydrochar and easily degradable organic wastewater (using glucose as a model compound) on enhancing anaerobic digestion. Their combined application reduced degradation time from 90 days (control) to 30-78 days. Optimal glucose concentrations (1-2 g/L) minimized the lag phase, while higher concentrations (4 g/L) hindered degradation due to acid inhibition. Hydrochar mitigated this by promoting volatile fatty acid conversion. It also enriched key functional microorganisms, stimulated functional gene expression, and strengthened synergistic interactions between phenol-degrading bacteria associated with direct interspecies electron transfer, such as Syntrophomonas, Anaerocella, and Syntrophus, and other microbial groups. This study highlights the potential of hydrochar combined with easily degradable organic wastewater as a green and effective strategy for enhancing phenol degradation.
Collapse
Affiliation(s)
- Qianqi Shao
- Department of Environment Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Tao Luo
- Department of Environment Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chao Zhang
- Department of Environment Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Keliang Zhu
- Department of Environment Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shicheng Zhang
- Department of Environment Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Department of Environment Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
San juan-Garisado Y, Luna-Guevara F, Herrera PA, Soto-Paz J, Alvarez-Trujillo JD, Mejia-Parada C, Parra-Orobio BA. Optimization of the Photo-Fenton process for the effective removal of chemical oxygen demand and phenols in portable toilet wastewater: A treatment study under real world conditions. Heliyon 2024; 10:e35286. [PMID: 39166086 PMCID: PMC11334677 DOI: 10.1016/j.heliyon.2024.e35286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Wastewater from portable toilets (WWPT) is characterized by a high content of organic matter and a variety of chemical compounds that retain bad odors, especially phenols, a type of pollutant that is difficult to degrade by conventional treatments; in addition, it is persistent, toxic, and accumulates in the aquatic environment. Although different successful experiences with the use of Photo-Fenton are reported in the scientific domain, its application in WWPT is scarce and warrants study due to the wide use of portable toilets. The objective of this study was to evaluate the Photo-Fenton oxidation process in the removal of organic matter expressed as COD in a WWPT, as well as the reduction of phenols and BOD5. The experimental runs were carried out in a 0.50 L batch reactor to evaluate the effect of the factors (H2O2: 0.019, 25.56, 40.67, 87.24, 148.91, 174.45 g L-1 and pH: 2.80, 3.00, 3.27, 4.40, 5.53, 6.00 UNT) on COD removal and sludge production. It was found that the optimum operating conditions of pH 4.72 and H2O2 dosage of 174.45 g L-1 reduced the concentration of phenols by 97.83 % and 95.49 % of COD. In addition, 98.01 % of BOD5 was reduced, resulting in a biodegradability ratio (BOD5/COD) of 0.23 compared to the untreated wastewater of 0.53. From a cost perspective, the use of Photo-Fenton to treat wastewater under these conditions would be US$ 1.15 per liter.
Collapse
Affiliation(s)
- Yorgi San juan-Garisado
- Universidad Popular Del Cesar Seccional Aguachica (UPCsA), Facultad de Ingenierías y Tecnologías, Grupo de Investigación GE&TES, Carrera 40 #1 Norte-2 a 1 Norte-58, Aguachica, Colombia
| | - Francisco Luna-Guevara
- Universidad de Santander, Facultad de Ingenierías, Grupo Ambiental de Investigación – GAIA, Calle 70 # 55-210, Bucaramanga, Colombia
| | - Pablo Alberto Herrera
- Universidad Popular Del Cesar Seccional Aguachica (UPCsA), Facultad de Ingenierías y Tecnologías, Grupo de Investigación GE&TES, Carrera 40 #1 Norte-2 a 1 Norte-58, Aguachica, Colombia
| | - Jonathan Soto-Paz
- Universidad de Investigación y Desarrollo, Faculty of Engineering, Research Group Threats, Vulnerability and Risks to Natural Phenomena, Calle 9 # 23-55, Bucaramanga, Colombia
| | - Jesus David Alvarez-Trujillo
- Universidad de Investigación y Desarrollo, Faculty of Engineering, Research Group Threats, Vulnerability and Risks to Natural Phenomena, Calle 9 # 23-55, Bucaramanga, Colombia
- Universidad Industrial de Santander, Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación en Recursos Hídricos y Saneamiento Ambiental – GPH, Carrera 27 Calle 9 Ciudad Universitaria, Bucaramanga, Colombia
| | - Cristian Mejia-Parada
- Universidad de Investigación y Desarrollo, Faculty of Engineering, Research Group Threats, Vulnerability and Risks to Natural Phenomena, Calle 9 # 23-55, Bucaramanga, Colombia
| | - Brayan Alexis Parra-Orobio
- Universidad Popular Del Cesar Seccional Aguachica (UPCsA), Facultad de Ingenierías y Tecnologías, Grupo de Investigación GE&TES, Carrera 40 #1 Norte-2 a 1 Norte-58, Aguachica, Colombia
| |
Collapse
|
3
|
Zhou L, Sun J, Xu X, Ma M, Li Y, Chen Q, Su H. Full quantitative resource utilization of raw mustard waste through integrating a comprehensive approach for producing hydrogen and soil amendments. Microb Cell Fact 2024; 23:27. [PMID: 38238808 PMCID: PMC10797975 DOI: 10.1186/s12934-023-02293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/30/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Pickled mustard, the largest cultivated vegetable in China, generates substantial waste annually, leading to significant environmental pollution due to challenges in timely disposal, leading to decomposition and sewage issues. Consequently, the imperative to address this concern centers on the reduction and comprehensive resource utilization of raw mustard waste (RMW). To achieve complete and quantitative resource utilization of RMW, this study employs novel technology integration for optimizing its higher-value applications. RESULTS Initially, subcritical hydrothermal technology was applied for rapid decomposition, with subsequent ammonia nitrogen removal via zeolite. Thereafter, photosynthetic bacteria, Rhodopseudomonas palustris, were employed to maximize hydrogen and methane gas production using various fermentation enhancement agents. Subsequent solid-liquid separation yielded liquid fertilizer from the fermented liquid and soil amendment from solid fermentation remnants. Results indicate that the highest glucose yield (29.6 ± 0.14) was achieved at 165-173℃, with a total sugar content of 50.2 g/L and 64% glucose proportion. Optimal ammonia nitrogen removal occurred with 8 g/L zeolite and strain stable growth at 32℃, with the highest OD600 reaching 2.7. Several fermentation promoters, including FeSO4, Neutral red, Na2S, flavin mononucleotide, Nickel titanate, Nickel oxide, and Mixture C, were evaluated for hydrogen production. Notably, Mixture C resulted in the maximum hydrogen production (756 mL), a production rate of 14 mL/h, and a 5-day stable hydrogen production period. Composting experiments enhanced humic acid content and organic matter (OM) by 17% and 15%, respectively. CONCLUSIONS This innovative technology not only expedites RMW treatment and hydrogen yield but also substantially enriches soil fertility. Consequently, it offers a novel approach for low-carbon, zero-pollution RMW management. The study's double outcomes extend to large-scale RMW treatment based on the aim of full quantitative resource utilization of RMW. Our method provides a valuable reference for waste management in similar perishable vegetable plantations.
Collapse
Affiliation(s)
- Ling Zhou
- Sichuan Communication Surveying and Design Institute Co., LTD, 35 Taisheng North Road, Qingyang District, Chengdu City, Sichuan Province, China
| | - JiaZhen Sun
- China railway academy Co., LTD, No, 118 Xiyuecheng Street, Jinniu District, Chengdu City, Sichuan Province, China
| | - XiaoJun Xu
- Sichuan Communication Surveying and Design Institute Co., LTD, 35 Taisheng North Road, Qingyang District, Chengdu City, Sichuan Province, China
| | - MingXia Ma
- Sichuan Communication Surveying and Design Institute Co., LTD, 35 Taisheng North Road, Qingyang District, Chengdu City, Sichuan Province, China
| | - YongZhi Li
- Chongqing Institute of Green and Interligent Technology, Chinese Academy of Science, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing, 400714, China
| | - Qiao Chen
- Chongqing Institute of Green and Interligent Technology, Chinese Academy of Science, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing, 400714, China.
| | - HaiFeng Su
- Chongqing Institute of Green and Interligent Technology, Chinese Academy of Science, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing, 400714, China.
| |
Collapse
|
4
|
Tang H, Liu Y, Liu X, Zhang A, Yang R, Han Y, Liu P, He HB, Li Z. Regulation methods and enhanced mechanism on the efficient degradation of aromatics in biochemical treatment system of coal chemical wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119358. [PMID: 37890402 DOI: 10.1016/j.jenvman.2023.119358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
In order to address the problems of poor treatment effect of coal chemical wastewater (CCW) biochemical treatment system resulting in non-compliance with effluent standards and unstable operation, a combination regulation method of co-substrate metabolism and predominant flora enhancement was constructed, and the performance and mechanism of enhanced degradation of aromatics in CCW was also investigated in this study. The results showed that when the influent concentration of chemical oxygen demand (COD) and aromatics was less than 600 mg/L and 180 mg/L respectively, there was no significant effect of the combined regulation method on the enhanced treatment of aromatics, the removal rate of total organic carbon (TOC) in the system could all more than 73%; while when the influent concentration of COD increased to 800 mg/L and the aromatics concentration increased to more than 240 mg/L, the ordinary activated sludge system had collapsed. Compared with the regulation method of co-substrate metabolism alone, the combination regulation method increased the removal rate of TOC by 21%. The analysis of antioxidant enzyme activity showed that under the combination regulation method, the antioxidant enzyme activity of microorganisms was higher and their resistance to adverse environments was stronger. EPS and dehydrogenase analysis indicated that the combination regulation method was more conducive to microbial degradation of aromatics. Meanwhile, the analysis of microbial community structure showed that the aromatics degradation bacteria genera Rhodococcus, Luteococcus, etc. were enriched under the combination regulation method. The study provides a theoretical basis and technical guidance for solving the problems of unstable operation of CCW biochemical treatment systems and non-compliance with effluent standards.
Collapse
Affiliation(s)
- Hui Tang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xingshe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Rushuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Yulu Han
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Pan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Hao Bo He
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
5
|
Zhang J, Liu J, Gao B, Sillanpää M, Han J. The efficiency and mechanism of excess sludge-based biochar catalyst in catalytic ozonation of landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132118. [PMID: 37494792 DOI: 10.1016/j.jhazmat.2023.132118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
In this study, biochar was produced based on dehydrated excess sludge from the municipal wastewater treatment plant, which was used for catalytic ozonation of pollutants derived from landfill leachate. The necessary catalytic sites in the structure of biochar were originated from the inorganic metals and organic matters in the sludge, which included a large number of functional groups (e.g., C-C, CO, etc.), adsorbed oxygen (Oads accounted for 44.82%) and electron defects (ID/IG=1.01). These active sites could promote the generation of reactive oxygen species (ROS) (e.g., ·OH,·O2-, etc.). The synergistic interaction between the microorganisms in the activated sludge also facilitated the removal rates of pollutants. Proteobacteria, Bacteroidetes, and Deinococcu-Thermus were crucial in the bioreactor. In 16 days of reaction, the removal ratios of NH+4-N and COD were 98.95 ± 0.11% and 90.89 ± 0.47%, respectively. This study not only explains the mechanism of catalytic ozonation of biochar, but also provides a new way of the practical treatment of landfill leachate.
Collapse
Affiliation(s)
- Jingyao Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiadong Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Bo Gao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Jin Han
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|