1
|
Majithiya VR, Ghoghari AM, Gohel SD. Purification, characterization, structural elucidation, and industrial applications of thermostable alkaline protease produced by seaweed-associated Nocardiopsis dassonvillei strain VCs-4. Int J Biol Macromol 2025; 305:141147. [PMID: 39978515 DOI: 10.1016/j.ijbiomac.2025.141147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/08/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Alkaline proteases are crucial in the enzyme industry. The seaweed-associated strain Nocardiopsis dassonvillei strain VCs-4 produced a protease with the optimal activity of 362.97 U/mL under haloalkaliphilic conditions. Kinetic analysis revealed a Km of 0.17 mg/mL, Vmax of 1928 U/mL/min, and Kcat of 16.66 s-1. The VCs-4 protease showed remarkable stability against chemical stresses, including surfactants, detergents, and bleaching agents, making it suitable for industrial use. Its thermal stability was demonstrated with a ΔH* of 73.36 kJ/mol, ΔS* of -87.27 J/mol, and a half-life (t₁/₂) of 15 min at 80 °C, extended to 19 min in 2 M NaCl. Structural analysis using FTIR and CD spectroscopy revealed a predominance of α-helices (79.64 %) and minimal β-strands (0.55 %) at 60 °C. Additionally, 97.78 % of the residues were in the most preferred regions of the Ramachandran plot, reflecting high stereochemical quality. The enzyme composition includes 17 % cysteine and 8.5 % serine residues, with a charge profile of four negatively charged (Asp, Glu) and seven positively charged (Arg, Lys) residues. The VCs-4 protease demonstrated potential for industrial applications, successfully removing blood stains and hydrolyzing gelatin from used X-ray film.
Collapse
Affiliation(s)
| | - Avani M Ghoghari
- Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Sangeeta D Gohel
- Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India.
| |
Collapse
|
2
|
García-Mateos R, Miranda MT, Arranz JI, Romero P, Sepúlveda FJ, Cuellar-Borrego S. Comparative Analysis of Energy Viability of Crop Residue from Different Corn Varieties. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1683. [PMID: 40271918 PMCID: PMC11990669 DOI: 10.3390/ma18071683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
The valorization of agricultural residues assumes a pivotal position in the circular economy by transforming waste into a useful and environmentally friendly product, with the cultivation of corn, as one of the world's predominant crops, being crucial. This article aimed to investigate the feasibility of using residues from corn crop as biofuels, going more in-depth into determining the effect that crop variety may have on its thermal qualities. Specifically, 12 samples of corn crop residues were studied in three main groups: conventional, forage, and transgenic varieties. To achieve this, proximate and ultimate analyses, thermogravimetric analyses, and differential scanning calorimetry were conducted, along with a study of gas emissions and a statistical comparison of different varieties. From the results obtained, it is worth highlighting the low ash content in all the samples (between 5.55% and 8.42%) and high calorific values (higher than 17 MJ/kg in all cases), as well as optimal thermal results for all the samples studied in both pyrolysis and combustion processes. Significant differences were found between the different varieties; in particular, it was observed that the forage variety presented more optimal conditions for its application in both processes. This may represent a potential competitive advantage for the forage varieties.
Collapse
Affiliation(s)
- Raquel García-Mateos
- Scientific and Technological Research Centre of Extremadura (CICYTEX), C/Pamplona 64, 06800 Mérida, Spain; (R.G.-M.); (S.C.-B.)
| | - María Teresa Miranda
- Department of Mechanical, Energy and Materials Engineering, Industrial Engineering School, University of Extremadura, Av. Elvas s/n, 06006 Badajoz, Spain; (J.I.A.); (P.R.); (F.J.S.)
| | - José Ignacio Arranz
- Department of Mechanical, Energy and Materials Engineering, Industrial Engineering School, University of Extremadura, Av. Elvas s/n, 06006 Badajoz, Spain; (J.I.A.); (P.R.); (F.J.S.)
| | - Pilar Romero
- Department of Mechanical, Energy and Materials Engineering, Industrial Engineering School, University of Extremadura, Av. Elvas s/n, 06006 Badajoz, Spain; (J.I.A.); (P.R.); (F.J.S.)
| | - Francisco José Sepúlveda
- Department of Mechanical, Energy and Materials Engineering, Industrial Engineering School, University of Extremadura, Av. Elvas s/n, 06006 Badajoz, Spain; (J.I.A.); (P.R.); (F.J.S.)
| | - Santiago Cuellar-Borrego
- Scientific and Technological Research Centre of Extremadura (CICYTEX), C/Pamplona 64, 06800 Mérida, Spain; (R.G.-M.); (S.C.-B.)
| |
Collapse
|
3
|
Chen B, Xie D, Jiang Y, Wang Y, Su C, Yao Z, Cai D, Cao H, Watson I. Co-pyrolysis of corn stalk and high-density polyethylene with emphasis on the fibrous tissue difference on thermal behavior and kinetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177847. [PMID: 39631326 DOI: 10.1016/j.scitotenv.2024.177847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The thermal properties of various corn stalk tissues (including stem, husk, ear, cob, and leaf), high-density polyethylene (HDPE), and their blends were investigated using thermogravimetric analysis under a nitrogen atmosphere. The results indicate that the thermal decomposition process of corn stalk tissue/HDPE mixtures is delayed with an increasing heating rate, regardless of the tissue type. Besides, the structural differences among various corn stalk tissues significantly influence their thermal behavior, product distribution, and co-pyrolysis kinetics with HDPE. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was conducted to analyze the pyrolytic products of the blends with different corn stalk tissues, revealing that corn cob/HDPE blends produce a higher yield of valuable chemicals, such as the furan derivates and aromatic hydrocarbons. Kinetic analysis was further performed using Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods to determine the activation energy for the reactions occurring during co-pyrolysis. The co-pyrolysis of corn cob/HDPE blend requires the least activation energy (149.3 kJ/mol) among five blends, which was ascribed to the high hemicellulose content in corn cob. Moreover, machine learning algorithms, including random forest (RF) and gradient boost regression tree (GBRT), were applied to predict mass loss in the corn fiber/HDPE blends, which showed RF possessed superior accuracy over GBRT. These findings suggest that isolating plant tissues during the feedstock pre-management could enhance the valorization performance of lignocellulose-waste plastic co-pyrolysis.
Collapse
Affiliation(s)
- Bo Chen
- Systems, Power and Energy Research Division, James Watts School of Engineering, College of Science and Engineering, James Watt South, University of Glasgow, Glasgow G128QQ, UK; National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Deyin Xie
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yongjie Jiang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yankun Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changsheng Su
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhitong Yao
- College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Hui Cao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Ian Watson
- Systems, Power and Energy Research Division, James Watts School of Engineering, College of Science and Engineering, James Watt South, University of Glasgow, Glasgow G128QQ, UK
| |
Collapse
|
4
|
Mishra A, Dash M, Barpanda T, Sibadatta A, Sahu P, Sahu P, Jahnavi P, Priyadarsini A, Nanda S, Mohanty MK. A Comprehensive Molecular, Biochemical, Histochemical, and Spectroscopic Characterization of Early and Medium Duration Rice Genotypes Investigating Dry Matter Accumulation Efficiencies. Appl Biochem Biotechnol 2024; 196:8117-8133. [PMID: 38687455 DOI: 10.1007/s12010-024-04950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Investigation on accumulation of cell wall components over critical growth stages will surely provide a new insight into dry matter accumulation studies in rice. An elevated biomass production provides an alternative strategy of yield improvement, which in turn maneuvers the species concerned as potential dual-purpose crop. On that note, present study was carried on 33 early and 39 medium duration rice genotypes. The average cellulose accumulation was 6.51% and 8.17% in early and medium duration genotypes, respectively, at flowering stage, which later on dipped to 1.43% and 3.46%, respectively, at physiological maturity. The gene specific marker MDgsp-5.a exhibited highest estimate of polymorphic information content (PIC), i.e., 0.685, closely followed by MDgsp-6.a with polymorphic information content (PIC) of 0.683. The control genotypes, i.e., Pratap and Mandakini, are grouped under the same cluster, i.e., Cluster-I.A, indicating their inherent genetic divergence from that of potential accumulators pertaining to cellulose accumulation. Pratap and Mandakini failed to produce peaks of conspicuous form at 3342 cm-1 and 1635 cm-1, bearing out by their low performance pertaining to cellulose and lignin accumulation at the later stages of development, respectively. From histochemistry studies, it was observed that the cell walls of sclerenchyma, peripheral vascular bundles, and parenchyma of the culm transections in control genotypes stained lightly than that of prolific accumulator cell walls, thus corroborating the findings of compositional analysis. The variation in cell wall thickening is primarily accounted due to altered carbohydrate accumulation across the growth stages as explored under scanning electron micrograph.
Collapse
Affiliation(s)
- Abinash Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Manasi Dash
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India.
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India.
| | - Tanya Barpanda
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Agnija Sibadatta
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Pragati Sahu
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Priyadarshini Sahu
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Pasupuleti Jahnavi
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Amrita Priyadarsini
- College of Basic Science and Humanities, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Spandan Nanda
- College of Basic Science and Humanities, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Mahendra Kumar Mohanty
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
5
|
Nanda S, Mishra A, Priyadarsini A, Barpanda T, Baral AK, Jena S, Jena PK, Mallick B, Dash M, Swain N, Jena NK, Mohanty MK. A comparative thermo-chemical characterization of oilseed, millet and pulse stem biomass for bioethanol production. Heliyon 2024; 10:e36946. [PMID: 39286146 PMCID: PMC11402915 DOI: 10.1016/j.heliyon.2024.e36946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
Various thermochemical and biochemical processes are resorted to transform agri-wastes into diverse green fuels. Current investigation encompassed three different types of biomass viz., gingelly, kodo millet and horse grams, whose desirability as biofuel feedstock have been largely unexplored till date. The existence of significant amount of cellulose (38.07 %), volatiles (75.19 %), calorific value (avg. 16.98 MJ/kg) in the gingelly biomass, demonstrates the effectiveness of the concerned biomass for utilization as feedstock in diverse industrial applications. The mean estimates of Eα were lower for kodo millet (approx. 150 kJ/mole), followed by gingelly (approx. 178 kJ/mole) and horse gram (approx. 180 kJ/mole). The mean estimates of ΔHα were 174.81 (FWO), 170.22 (KAS), 169.17 (S) and 170.40 (T) kJ/mol for the gingelly biomass. The mean estimates of ΔHα were 147.83 (FWO), 148.81 (KAS), 147.93 (S) and 149.04 (T) kJ/mol for kodo millet biomass, while for horse gram biomass, mean estimates of ΔHα were 178.91 (FWO), 169.61 (KAS), 168.56 (S) and 168.81 (T) kJ/mol. The minor difference of 3-4 kJ/mole between Aα and Hα, signifies the viability of the thermal disintegration process. From master plot, it's evident that the experimental curve intersects multiple theoretical curves, highlighting the intricate characteristics of the thermal disintegration process. The overall ethanol recovery was highest in gingelly as compared to both the biomasses. Gingelly biomass yielded an ethanol titer of 24.8 g/L after 24 h, resulting in a volumetric ethanol productivity of 1.03 g/L/h and an ethanol yield of 0.36 g/g.
Collapse
Affiliation(s)
- Spandan Nanda
- Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Abinash Mishra
- Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | | | - Tanya Barpanda
- Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Amiya Kumar Baral
- Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Supriya Jena
- Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Pradip Kumar Jena
- Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | | | - Manasi Dash
- Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Nandita Swain
- Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
6
|
Zou L, Guo S, Wang Y, Shao H, Wu A, Zhao Q. Advancing hydrogen generation: Kinetic insights and process refinement for sorption-enhanced steam gasification of biomass utilizing waste carbide slag. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121717. [PMID: 38981274 DOI: 10.1016/j.jenvman.2024.121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Sorption enhanced steam gasification of biomass (SESGB) presents a promising approach for producing high-purity H2 with potential for zero or negative carbon emissions. This study investigated the effects of gasification temperature, CaO to carbon in biomass molar ratio [CaO/C], and steam flow on the SESGB process, employing carbide slag (CS) and its modifications, CSSi2 (mass ratio of CS to SiO2 is 98:2) and CSCG5 (mass ratio of CS to coal gangue (CG) is 95:5), as CaO-based sorbents. The investigation included non-isothermal and isothermal gasification experiments and kinetic analyses using corn cob (CC) in a macro-weight thermogravimetric setup, alongside a fixed-bed pyrolysis-gasification system to assess operational parameter effects on gas product. The results suggested that CO2 capture by CaO reduced the mass loss during the main gasification as the [CaO/C] increased. The appropriate temperature for SESGB process should be selected between 550 and 700 °C at atmospheric pressure. The appropriate amount of sorbent or steam could facilitate the gasification reaction, but excessive addition led to adverse effects. Operational parameters influenced the apparent activation energy (Ea) by affecting various gasification reactions. For each test, Ea at the char gasification stage was significantly higher than that at the rapid pyrolysis stage. The addition of CS notably increased H2 concentration and yield, while sharply reducing CO2 levels. H2 concentration initially rose and then fell with greater steam flow, peaking at 76.11 vol% for a steam flow of 1.0 g/min. H2 yield peaked at 298 mL/g biomass with a steam flow of 1.5 g/min, a gasification temperature of 600 °C and a [CaO/C] of 1.0. Increasing gasification temperature remarkably boosted the H2 and CO2 yields. Optimal conditions for the SESGB using CS as a sorbent, determined via response surface methodology (RSM), include a gasification temperature of 666 °C, a [CaO/C] of 1.99, and a steam flow of 0.5 g/min, under which H2 and CO2 yields were 464 and 48 mL/g biomass, respectively. CSSi2 and CSCG5 demonstrated excellent cyclic H2 production stability, maintaining H2 yields around 440 mL/g biomass and low CO2 yields (∼60 mL/g biomass) across five cycles. The study results offer new insights for the high-value utilization of agroforestry biomass and the reduction and resource utilization of industrial waste.
Collapse
Affiliation(s)
- Li Zou
- Key Laboratory of Thermo-Fluid Science and Engineering (Ministry of Education), Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, PR China
| | - Shipeng Guo
- Key Laboratory of Thermo-Fluid Science and Engineering (Ministry of Education), Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, PR China
| | - Yungang Wang
- Key Laboratory of Thermo-Fluid Science and Engineering (Ministry of Education), Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, PR China
| | - Huaishuang Shao
- Key Laboratory of Thermo-Fluid Science and Engineering (Ministry of Education), Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, PR China
| | - Angjian Wu
- National Key Laboratory of Efficient and Clean Utilisation of Energy, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Qinxin Zhao
- Key Laboratory of Thermo-Fluid Science and Engineering (Ministry of Education), Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, PR China.
| |
Collapse
|
7
|
Mishra A, Dash S, Barpanda T, Choudhury S, Mishra P, Dash M, Swain D. Improvement of little millet (Panicum sumatrense) using novel omics platform and genetic resource integration. PLANTA 2024; 260:60. [PMID: 39052093 DOI: 10.1007/s00425-024-04493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
MAIN CONCLUSION This article explores possible future initiatives, such as the development of targeted breeding and integrated omics approach to boost little millet production, nutritional value, and environmental adaptation. Little millet (P. sumatrense) is a staple grain in many parts of Asia and Africa owing to its abundance in vitamins and minerals and its ability to withstand harsh agro-ecological conditions. Enhancing little millet using natural resources and novel crop improvement strategy is an effective way of boosting nutritional and food security. To understand the genetic makeup of the crop and figure out important characteristics linked to nutritional value, biotic and abiotic resistance, and production, researchers in this field are currently resorting on genomic technology. These realizations have expedited the crop's response to shifting environmental conditions by enabling the production of superior cultivars through targeted breeding. Going forward, further improvements in breeding techniques and genetics may boost the resilience, nutritional content, and production of little millet, which would benefit growers and consumers alike. The research and development on little millet improvement using novel omics platform and the integration of genetic resources are summarized in this review paper. Improved cultivars of little millet that satisfy changing farmer and consumer demands have already been developed through the use of these novel breeding strategies. This article also explores possible future initiatives, such as the development of targeted breeding, genomics, and sustainable agriculture methods. The potential for these measures to boost little millet's overall production, nutritional value, and climate adaptation will be extremely helpful in addressing nutritional security.
Collapse
Affiliation(s)
- Abinash Mishra
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India.
| | - Suman Dash
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Tanya Barpanda
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Suman Choudhury
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Pratikshya Mishra
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Manasi Dash
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Digbijaya Swain
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
8
|
Thangarasu V, de Oliveira MR, Alves Oliveira LA, Aladawi S, Avila I. Combustion characteristics and gasification kinetics of Brazilian municipal solid waste subjected to different atmospheres by thermogravimetric analysis. BIORESOURCE TECHNOLOGY 2024; 403:130906. [PMID: 38806134 DOI: 10.1016/j.biortech.2024.130906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
This study examines the gasification kinetics of Brazilian municipal solid waste (MSW) and its components under air, CO2, and air/CO2 (70/30 vol%) atmospheres. The ignition indices of paper and plastic are 6 and 3 times that of food waste, which are 38.6 × 10-3 %/min3 and 19.6 × 10-3 %/min3, respectively, implying a faster separation of volatile compounds from the paper and plastic. The minimum Eα values of 132 kJ/mol and 140 kJ/mol have been obtained for paper waste under air and air/CO2, respectively. On CO2 condition, MSW has an average Ea value of 96 kJ/mol. Under an air/CO2 atmosphere, a high synergistic ΔW of -4.7 wt% has been identified between individual components. The presence of air and CO2 improves the oxidation and char gasification process, thus resulting in better combustion. Hence, the gasification of MSW under an air/CO2 atmosphere would improve the waste-to-energy plant's performance and minimize the CO2 emission.
Collapse
Affiliation(s)
- Vinoth Thangarasu
- UNESP - Sao Paulo State University, School of Engineering, Department of Energy, Laboratory of Combustion and Carbon Capture (LC-3), Av. Dr. Ariberto Pereira da Cunha, 333, 12516-410 Guaratingueta, SP, Brazil.
| | - Miriam Ricciulli de Oliveira
- UNESP - Sao Paulo State University, School of Engineering, Department of Energy, Laboratory of Combustion and Carbon Capture (LC-3), Av. Dr. Ariberto Pereira da Cunha, 333, 12516-410 Guaratingueta, SP, Brazil
| | - Luís Augusto Alves Oliveira
- UNESP - Sao Paulo State University, School of Engineering, Department of Energy, Laboratory of Combustion and Carbon Capture (LC-3), Av. Dr. Ariberto Pereira da Cunha, 333, 12516-410 Guaratingueta, SP, Brazil
| | - Saif Aladawi
- Department of Petroluem and Chemical Engineering, Sultan Qaboos University, Oman
| | - Ivonete Avila
- UNESP - Sao Paulo State University, School of Engineering, Department of Energy, Laboratory of Combustion and Carbon Capture (LC-3), Av. Dr. Ariberto Pereira da Cunha, 333, 12516-410 Guaratingueta, SP, Brazil
| |
Collapse
|
9
|
Zhang Y, Raashid M, Shen X, Waqas Iqbal M, Ali I, Ahmad MS, Simakov DSA, Elkamel A, Shen B. Investigation of the evolved pyrolytic products and energy potential of Bagasse: experimental, kinetic, thermodynamic and boosted regression trees analysis. BIORESOURCE TECHNOLOGY 2024; 394:130295. [PMID: 38184085 DOI: 10.1016/j.biortech.2023.130295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
This study explored bagasse's energy potential grown using treated industrial wastewater through various analyses, experimental, kinetic, thermodynamic, and machine learning boosted regression tree methods. Thermogravimetry was employed to determine thermal degradation characteristics, varying the heating rate from 10 to 30 °C/min. The primary pyrolysis products from bagasse are H2, CH4, H2O, CO2, and hydrocarbons. Kinetic parameters were estimated using three model-free methods, yielding activation energies of approximately 245.98 kJ mol-1, 247.58 kJ mol-1, and 244.69 kJ mol-1. Thermodynamic parameters demonstrated the feasibility and reactivity of pyrolysis with ΔH ≈ 240.72 kJ mol-1, ΔG ≈ 162.87 kJ mol-1, and ΔS ≈ 165.35 J mol-1 K-1. The distribution of activation energy was analyzed using the multiple distributed activation energy model. Lastly, boosted regression trees predicted thermal degradation successfully, with an R2 of 0.9943. Therefore, bagasse's potential as an eco-friendly alternative to fossil fuels promotes waste utilization and carbon footprint reduction.
Collapse
Affiliation(s)
- Yu Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Muhammad Raashid
- Department of Chemical, Polymer and Composite Materials Engineering, New campus, UET Lahore, Pakistan
| | - Xiaoqian Shen
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Muhammad Waqas Iqbal
- Department of Chemical, Polymer and Composite Materials Engineering, New campus, UET Lahore, Pakistan
| | - Imtiaz Ali
- Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Muhammad Sajjad Ahmad
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, China
| | | | - Ali Elkamel
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, UAE; Department of Chemical Engineering, University of Waterloo, Canada
| | - Boxiong Shen
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, China.
| |
Collapse
|
10
|
Mishra A, Mishra TK, Nanda S, Mohanty MK, Dash M. A comprehensive review on genetic modification of plant cell wall for improved saccharification efficiency. Mol Biol Rep 2023; 50:10509-10524. [PMID: 37921982 DOI: 10.1007/s11033-023-08886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023]
Abstract
The focus is now on harnessing energy from green sources through sustainable technology to minimize environmental pollution. Several crop residues including rice and wheat straw are having enormous potential to be used as lignocellulosic source material for bioenergy production. The lignocellulosic feedstock is primarily composed of cellulose, hemicellulose, and lignin cell wall polymers. The hemicellulose and lignin polymers induce crosslinks in the cell wall, by firmly associating with cellulose microfibrils, and thereby, denying considerable access of cellulose to cellulase enzymes. This issue has been addressed by various researchers through downregulating several genes associated in monolignol biosynthesis in Arabidopsis, Poplar, Rice and Switchgrass to increase ethanol recovery. Similarly, xylan biosynthetic genes are also targeted to genetically culminate its accumulation in the secondary cell walls. Regulation of cellulose synthases (CesA) proves to be an effective tool in addressing the negative impact of these two factors. Modification in the expression of cellulose synthase aids in reducing cellulose crystallinity as well as polymerisation degree which in turn increases ethanol recovery. The engineered bioenergy crops and various fungal strains with state of art biomass processing techniques presents the most recent integrative biotechnology model for cost effective green fuels generation along with production of key value-added products with minuscule disturbances in the environment. Plant breeding strategies utilizing the existing variability for biomass traits will be key in developing dual purpose varieties. For this purpose, reorientation of conventional breeding techniques for incorporating useful biomass traits will be effective.
Collapse
Affiliation(s)
- Abinash Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Tapas Kumar Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Spandan Nanda
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Mahendra Kumar Mohanty
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Manasi Dash
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
11
|
Xie T, Zhao L, Yao Z, Kang K, Jia J, Hu T, Zhang X, Sun Y, Huo L. Co-pyrolysis of biomass and polyethylene: Insights into characteristics, kinetic and evolution paths of the reaction process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165443. [PMID: 37442473 DOI: 10.1016/j.scitotenv.2023.165443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Investigation on the distribution and mechanism of co-pyrolysis products is vital to the directional control and high-value utilization of agriculture solid wastes. Co-pyrolysis, devolatilization, kinetics characteristics, and evolution paths of corn stalk (CS) and low-density-polyethylene (LDPE) were investigated via thermogravimetric experiments. The co-pyrolysis behaviors could be separated into two stages: firstly, the degradation of CS (150- 400 °C); secondly, the degradation of CS (400- 550 °C). The devolatilization index (DI) increased with the addition of LDPE. Furthermore, a combination of devolatilization chemical analysis with product analysis to analyze the intrinsic mechanism during co-pyrolysis. The results indicated that the yield of alkanes and olefin in gas products increased with the addition of LDPE. Additionally, LDPE pyrolysis maybe abstract hydrogen from CS pyrolysis and evolved into hydrogen, methane, and ethylene. Further, the co-pyrolysis kinetic parameters were computed by using model-free isoconversion methods, which showed promotion of CS pyrolysis and the reduced activation energy. All the activation energy were declined, which indicated a "bidirectional positive effect" during co-pyrolysis. The mean activation energy of P-cellulose (P-CE), P-hemicellulose (P-HM), P-lignin (P-LG), and LDPE decreased by 23.49 %, 12.89 %, 15.36 %, and 27.82 %, respectively. This study further proves the hydrogen donor transfer pathway in the co-pyrolysis process of CS and LDPE, providing theoretical support for the resource utilization of agricultural solid waste.
Collapse
Affiliation(s)
- Teng Xie
- Key Laboratory of Agricultural Green and Low-carbon for North China Plain, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixin Zhao
- Key Laboratory of Agricultural Green and Low-carbon for North China Plain, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zonglu Yao
- Key Laboratory of Agricultural Green and Low-carbon for North China Plain, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kang Kang
- Biorefining Research Institute (BRI) and Department of Chemical Engineering, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Jixiu Jia
- Key Laboratory of Agricultural Green and Low-carbon for North China Plain, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tingxia Hu
- Key Laboratory of Agricultural Green and Low-carbon for North China Plain, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyi Zhang
- Key Laboratory of Agricultural Green and Low-carbon for North China Plain, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuxuan Sun
- Key Laboratory of Agricultural Green and Low-carbon for North China Plain, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lili Huo
- Key Laboratory of Agricultural Green and Low-carbon for North China Plain, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
12
|
Chang YJ, Chang JS, Lee DJ. Gasification of biomass for syngas production: Research update and stoichiometry diagram presentation. BIORESOURCE TECHNOLOGY 2023; 387:129535. [PMID: 37495160 DOI: 10.1016/j.biortech.2023.129535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Gasification is a thermal process that converts organic materials into syngas, bio-oil, and solid residues. This mini-review provides an update on current research on producing high-quality syngas from biomass via gasification. Specifically, the review highlights the effective valorization of feedstocks, the development of novel catalysts for reforming reactions, the configuration of novel integrated gasification processes with an assisted field, and the proposal of advanced modeling tools, including the use of machine learning strategies for process design and optimization. The review also includes examples of using a stoichiometry diagram to describe biomass gasification. The research efforts in this area are constantly evolving, and this review provides an up-to-date overview of the most recent advances and prospects for future research. The proposed advancements in gasification technology have the potential to significantly contribute to sustainable energy production and reduce greenhouse gas emissions.
Collapse
Affiliation(s)
- Ying-Ju Chang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong; Department of Chemical Engineering & Materials Engineering, Yuan Ze University, Chung-li, 32003, Taiwan.
| |
Collapse
|
13
|
Tagade A, Kandpal S, Sawarkar AN. Insights into pyrolysis of pearl millet (Pennisetum glaucum) straw through thermogravimetric analysis: Physico-chemical characterization, kinetics, and reaction mechanism. BIORESOURCE TECHNOLOGY 2023; 391:129930. [PMID: 39491114 DOI: 10.1016/j.biortech.2023.129930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Millets and millet crop residues are gaining increasing attention. Present work provides insights into thermal degradation characteristics, pyrolysis indices, kinetic triplets, and thermodynamic parameters for pearl millet straw (PMS) pyrolysis. Pyrolysis indices revealed suitability of higher heating rates for PMS in terms of enhanced pyrolysis performance and shorter reaction time. Combined iso-conversional techniques and distributed activation energy model (DAEM) approach was employed to study kinetics of PMS pyrolysis. Average activation energy through Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, Friedman, Starink, Vyazovkin, and DAEM was found to be 189.61, 190.84, 192.71, 187.84, 193.33, and 191.08 kJ/mol, respectively. Statistical analysis through ANOVA using Tukey test demonstrated insignificant deviation for obtained activation energies. Kinetic compensation effect was employed to determine pre-exponential factor. Master plots revealed prevalence of random nucleation (R1 and R2) for α < 0.5 and diffusion (D1) and power law (P2) models for α > 0.5. Thermodynamic parameters revealed endothermic, non-spontaneous, and high degree of randomness for PMS pyrolysis.
Collapse
Affiliation(s)
- Ankita Tagade
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Saurav Kandpal
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Ashish N Sawarkar
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
14
|
Shrivastava P, Palamanit A, Kumar A. Isoconversional thermal decomposition reaction kinetics of oil palm trunk and rubberwood sawdust for thermochemical conversion processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28998-5. [PMID: 37556055 DOI: 10.1007/s11356-023-28998-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/22/2023] [Indexed: 08/10/2023]
Abstract
Biomass as a raw material has profound implications for thermal conversion processes. It is important to study the relationship between kinetic modeling to depict significant importance in thermal processing by estimating volatile yield and reaction performance during biomass decomposition. This work aimed to determine the thermal decomposition reaction kinetics of non-woody (oil palm trunk (OPT)) and woody (rubberwood sawdust (RWS)) biomass. Devolatilization of biomass is determined by the thermogravimetric analysis (TGA) at three different heating rates (10, 20, and 30 °C/min) using nitrogen as inert gas. The kinetic analysis used isoconversion models of Friedman, Ozawa-Flynn-Wall (OFW), and Kissinger-Akahira-Sunose (KAS). The activation energy varied from 218.4 to 303.8 kJ/mol (Friedman), 235.9 to 299.1 kJ/mol (OFW), and 235.8 to 298.9 kJ/mol (KAS) for OPT; and 199.7 to 228.1 kJ/mol (Friedman), 210.6 to 225.6 kJ/mol (OFW), and 210.7 to 225.2 kJ/mol (KAS) for RWS. The kinetic analysis indicated that RWS and OPT had diverse reaction kinetics, which depend on the reaction rate and order of the reaction. Experimental and theoretical conversion data agreed reasonably well, indicating that these results can be used for future OPT and RWS process modeling. Consistency of results is validated using GC-MS equipped with a pyrolyzer.
Collapse
Affiliation(s)
- Pranshu Shrivastava
- Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Arkom Palamanit
- Biomass Energy and Sustainable Technologies (BEST) Research Center, Energy Technology Program, Department of Interdisciplinary Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Anil Kumar
- Department of Mechanical Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.
- Centre for Energy and Environment, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.
| |
Collapse
|
15
|
Tagade A, Sawarkar AN. Valorization of millet agro-residues for bioenergy production through pyrolysis: Recent inroads, technological bottlenecks, possible remedies, and future directions. BIORESOURCE TECHNOLOGY 2023:129335. [PMID: 37343798 DOI: 10.1016/j.biortech.2023.129335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Millets are receiving increasing attention, lately, in view of their preeminent agronomic traits, nutritional significance, and renewed emphasis on highlighting their health benefits through national and international programs. As a consequence, a variety of millets are being cultivated in different parts of the world resulting in significant amount of millet agro-residues. Present study comprehends critical analysis of reported investigations on pyrolysis of different millet agro-residues encompassing (i) physico-chemical characterization (ii) kinetics and thermodynamic parameters (iii) reactors employed and (iv) relationship between the reaction conditions and characteristics of millets-derived biochar and its prospective applications. Based on the analysis of reported investigations, specific research gaps have been figured out. Finally, future directions for leveraging the energy potential of millet agro-residues are also discussed. The analysis elucidated is expected to be useful for the researchers for making further inroads pertaining to sustainable utilization of millet agro-residues in tandem with other commonly employed agro-residues.
Collapse
Affiliation(s)
- Ankita Tagade
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Ashish N Sawarkar
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
16
|
Mishra A, Sahoo JP, Swain B, Nanda S, Mishra TK, Dwibedi SK, Jena B, Pradhan B, Parida MR, Jena PK, Samantaray SM, Samantaray D, Mohanty MK, Dash M. Biochemical and SSR based molecular characterization of elite rice varieties for straw lignocellulose. Mol Biol Rep 2023:10.1007/s11033-023-08454-w. [PMID: 37155011 DOI: 10.1007/s11033-023-08454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Lignocellulosic biomass from rice straw possesses enormous potential in generating bioenergy thereby reducing the dependence of human on non-renewable fuel sources. Developing rice varieties of such calibre necessitates biochemical characterization as well as assessing the presence of genetic diversity among the rice genotypes with respect to cellulose content. METHODS AND RESULTS Forty-three elite rice genotypes were selected for biochemical characterization and SSR marker-based genetic fingerprinting. For genotyping, 13 cellulose synthase specific polymorphic markers were used. The diversity analysis was performed using TASSEL 5.0 and GenAlE × 6.51b2, software program. Of the 43 rice varieties, CR-Dhan-601, CR-Dhan-1014, Mahanadi, Jagabandhu, Gouri, Samanta and Chandrama were found to possess desirable lignocellulosic composition with respect to harnessing green fuels. The marker OsCESA-1.3 expressed the highest PIC (0.640), while the marker OsCESA-6.3 of lowest PIC (0.128). A moderate average estimate (0.367) of PIC was observed under current set of genotypes and marker system. The dendrogram analysis grouped the rice genotypes into two principal clusters i.e., cluster I and II. Cluster-II is monogenetic, while cluster-I is having 42 genotypes. CONCLUSIONS The moderate level of both PIC and H average estimates indicate the narrow genetic bases of the germplasms. The varieties falling under different clusters possessing desirable lignocellulosic composition can be used in a hybridization programme to develop bioenergy efficient varieties. The promising varietal combinations that can be used as parents for developing bioenergy efficient genotypes are Kanchan / Gobinda, Mahanadi / Ramachandi, Mahanadi / Rambha, Mahanadi / Manika, Rambha / Manika, Rambha / Indravati and CR-Dhan-601 / Manika as they offer an advantage of higher cellulose accumulation. This study helped in identification of suitable dual purpose rice varieties for biofuel production without compromising food security.
Collapse
Affiliation(s)
- Abinash Mishra
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Jyoti Prakash Sahoo
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Bishnupriya Swain
- Department of Chemistry, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Spandan Nanda
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Tapash Kumar Mishra
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Sanat Kumar Dwibedi
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Bandita Jena
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Banshidhar Pradhan
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Manas Ranjan Parida
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Pradip Kumar Jena
- College of Basic Science and Humanities, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Saubhagya Manjari Samantaray
- College of Basic Science and Humanities, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Debiprasad Samantaray
- College of Basic Science and Humanities, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Mahendra Kumar Mohanty
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Manasi Dash
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|