1
|
Mu X, Chen C, Fan Q, Zhang W, Liu F, Guo J, Qi W, Liu H. Removal and ecological impact of sulfamethoxazole and N-acetyl sulfamethoxazole in mesocosmic wetlands dominated by submerged plants: Plant tolerance, microbial response, and nitrogen transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178034. [PMID: 39675288 DOI: 10.1016/j.scitotenv.2024.178034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
Sulfamethoxazole (SMX) and its human metabolite N-acetylsulfamethoxazole (N-SMX) are frequently detected in aquatic environments, posing potential threats to freshwater ecosystem health. Constructed wetlands are pivotal for wastewater treatment, with plant species serving as key determinants of pollutant removal efficiency. In this study, wetlands dominated by three submerged plants (Myriophyllum verticillatum, Vallisneria spiralis, Hydrilla verticillata) were respectively constructed to investigate the removal of SMX and N-SMX, and the impact on wetland ecology regarding plant tolerance, microbial response, and nitrogen transformation. Results showed that wetlands removed N-SMX (82.3-99.8 %) more effectively than SMX (54.3-80.2 %), with the wetland dominated by Myriophyllum verticillatum showing the highest removal efficiency. However, high concentrations (5 mg/L) of SMX and N-SMX significantly reduced NH4+-N and TN removal (p < 0.05), accompanied by shifts in microbial communities, especially a decreased abundance of Proteobacteria and key nitrogen-transforming genes. A total of 22 different ARGs (antibiotic resistance genes) were detected. SMX significantly increased the relative abundance of sulfonamide resistance genes (sul1, sul2) (p < 0.05), while major denitrifying genera, such as Thiobacillus, which were not the primary hosts of these genes, showed a significant negative correlation with sul1 and sul2 (p < 0.05). This study provides a reference for ecological remediation of wetlands in response to antibiotic contamination.
Collapse
Affiliation(s)
- Xiaoying Mu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China
| | - Congli Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qinya Fan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weihang Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fei Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaxun Guo
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu Province 221116, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Wang SP, Sun ZY, Wang ST, Tang YQ. Microbial mechanisms of biochar addition on carbon and nitrogen synergistic retention during distilled grain waste composting: Insights from metagenomic analysis. BIORESOURCE TECHNOLOGY 2024; 411:131346. [PMID: 39182795 DOI: 10.1016/j.biortech.2024.131346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
To elucidate the mechanism of biochar addition on carbon and nitrogen retention during distilled grain (DGW) composting, this study investigated the losses of carbon and nitrogen and functional genes related to carbon and nitrogen metabolisms between biochar-treated and control composts. The addition of biochar significantly increased carbon and nitrogen retention by 13.5% and 33.8%, respectively. The difference in core carbon metabolism genes indicated that biochar addition inhibited CO2 release and promoted carbon fixation during the later composting phase, leading to improved carbon retention. Nitrogen metabolism analysis indicated that biochar addition suppressed early-phase ammoniation and late-phase denitrification and promoted nitrification and ammonia assimilation during the later stages of composting, thereby preserving nitrogen. During the later composting phase, biochar addition enhanced carbon-nitrogen coupling metabolism activity, leading to the synchronous retention of carbon and nitrogen. These findings elucidate the mechanism of biochar addition on carbon and nitrogen retention during DGW composting.
Collapse
Affiliation(s)
- Shi-Peng Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, Henan, PR China; College of Architecture and Environment, Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorisation, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorisation, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Song-Tao Wang
- Luzhou Laojiao Co., Ltd, Luzhou 646000, Sichuan, PR China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorisation, Sichuan University, Chengdu 610065, Sichuan, PR China
| |
Collapse
|
3
|
Yu Z, Zhou M, Zhang H, Yuan L, Lv P, Wang L, Zhang J. Changes in Cd forms and Cd resistance genes in municipal sludge during coupled earthworm and biochar composting. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117179. [PMID: 39405965 DOI: 10.1016/j.ecoenv.2024.117179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
There is a close relationship between microbial activity and the bioavailability of heavy metals, and heavy metal resistance genes can affect the activity of heavy metals. To evaluate the effects of coupled earthworm and biochar composting on Cd forms and Cd resistance genes in sludge, the BCR continuous extraction method was applied to classify the Cd forms, and Cd resistance genes were quantitatively determined with heavy metal gene chip technology. The results showed that the changes in earthworm biomass during composting were sufficiently fitted by logistic models and that adding biochar effectively increased earthworm biomass. The coupled treatment of earthworms and biochar promoted the degradation of sludge. The coupled treatment of earthworms and biochar reduced the proportion of acid-extractable and reducible Cd relative to total Cd, increased the proportion of oxidized and residual Cd relative to total Cd, transformed Cd forms from active to inert, and reduced the gene copy number of Cd resistance genes (czcA, czcB, czcC, czcD, czcS, czrA, czrR, cadA, and zntA). czcB was identified as a key gene that affected acid-extractable Cd and residual Cd contents; czcA, czcB, czcD, and czcS were identified as key genes that affected the reducible Cd content; czrR and cadA were identified as key genes that affected the oxidized Cd content; and czcC was identified as a key gene that affected the total Cd content. Cd resistance genes could directly affect the Cd form or indirectly affect Cd form through their interactions with each other.
Collapse
Affiliation(s)
- Zhimin Yu
- Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Collaborative Innovation Center for Development and Utilization of Forest Resource, Harbin 150040, PR China.
| | - Meng Zhou
- State Key Laboratory f Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China.
| | - Hongwei Zhang
- Beidahuang Agricultural Reclamation Group Co., Ltd, Harbin 150000, PR China.
| | - Lei Yuan
- Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Collaborative Innovation Center for Development and Utilization of Forest Resource, Harbin 150040, PR China.
| | - Pin Lv
- Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Collaborative Innovation Center for Development and Utilization of Forest Resource, Harbin 150040, PR China.
| | - Limin Wang
- Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Collaborative Innovation Center for Development and Utilization of Forest Resource, Harbin 150040, PR China.
| | - Jizhou Zhang
- Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Collaborative Innovation Center for Development and Utilization of Forest Resource, Harbin 150040, PR China.
| |
Collapse
|
4
|
Huang H, He M, Liu X, Ma X, Yang Y, Shen Y, Yang Y, Zhen Y, Wang J, Zhang Y, Wang S, Shan X, Fan W, Guo D, Niu Z. The dynamic features and microbial mechanism of nitrogen transformation for hydrothermal aqueous phase as fertilizer in dryland soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120643. [PMID: 38513582 DOI: 10.1016/j.jenvman.2024.120643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 02/19/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Hydrothermal aqueous phase (HAP) contains abundant organics and nutrients, which have potential to partially replace chemical fertilizers for enhancing plant growth and soil quality. However, the underlying reasons for low available nitrogen (N) and high N loss in dryland soil remain unclear. A cultivation experiment was conducted using HAP or urea to supply 160 mg N kg-1 in dryland soil. The dynamic changes of soil organic matters (SOMs), pH, N forms, and N cycling genes were investigated. Results showed that SOMs from HAP stimulated urease activity and ureC, which enhanced ammonification in turn. The high-molecular-weight SOMs relatively increased during 5-30 d and then biodegraded during 30-90 d, which SUV254 changed from 0.51 to 1.47 to 0.29 L-1 m-1. This affected ureC that changed from 5.58 to 5.34 to 5.75 lg copies g-1. Relative to urea, addition HAP enhanced ON mineralization by 8.40 times during 30-90 d due to higher ureC. It decreased NO3-N by 65.35%-77.32% but increased AOB and AOA by 0.25 and 0.90 lg copies g-1 at 5 d and 90 d, respectively. It little affected nirK and increased nosZ by 0.41 lg copies g-1 at 90 d. It increased N loss by 4.59 times. The soil pH for HAP was higher than that for urea after 11 d. The comprehensive effects of high SOMs and pH, including ammonification enhancement and nitrification activity inhibition, were the primary causes of high N loss. The core idea for developing high-efficiency HAP fertilizer is to moderately inhibit ammonification and promote nitrification.
Collapse
Affiliation(s)
- Hua Huang
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China; Engineering Research Center of Efficient Exploitation of Oil and Gas Resources and Protection Ecological Environment, Yan'an, 716000, China; Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an, 716000, Shaanxi, China
| | - Maoyuan He
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Xiaoyan Liu
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Xiaoli Ma
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Ying Yang
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yuanlei Shen
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yujia Yang
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yanzhong Zhen
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China; Engineering Research Center of Efficient Exploitation of Oil and Gas Resources and Protection Ecological Environment, Yan'an, 716000, China
| | - Jian Wang
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China; Engineering Research Center of Efficient Exploitation of Oil and Gas Resources and Protection Ecological Environment, Yan'an, 716000, China
| | - Yongtao Zhang
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China; Engineering Research Center of Efficient Exploitation of Oil and Gas Resources and Protection Ecological Environment, Yan'an, 716000, China
| | - Shuai Wang
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China; Engineering Research Center of Efficient Exploitation of Oil and Gas Resources and Protection Ecological Environment, Yan'an, 716000, China
| | - Xianying Shan
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Wenyan Fan
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Di Guo
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China; Engineering Research Center of Efficient Exploitation of Oil and Gas Resources and Protection Ecological Environment, Yan'an, 716000, China
| | - Zhirui Niu
- School of Petroleum Engineering and Environmental Engineering, Yan'an Key Laboratory of Agricultural Solid Waste Resource Utilization, Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an University, Yan'an, 716000, Shaanxi, China; Engineering Research Center of Efficient Exploitation of Oil and Gas Resources and Protection Ecological Environment, Yan'an, 716000, China; Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
5
|
Sun Y, Xu Y, Zhang J, Bello A, Li X, Liu W, Egbeagu UU, Zhao L, Han Y, Cheng L, Zhang W, Meng Q, Bi R, Zhao M, Liu X, Sun L, Gai Z, Shi S, Jong C, Xu X. Investigation of underlying links between nitrogen transformation and microorganisms' network modularity in the novel static aerobic composting of dairy manure by "stepwise verification interaction analysis". THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163674. [PMID: 37100152 DOI: 10.1016/j.scitotenv.2023.163674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/21/2023] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
Conventional composting is a viable method treating agricultural solid waste, and microorganisms and nitrogen transformation are the two major components of this proces. Unfortunately, conventional composting is time-consuming and laborious, and limited efforts have been made to mitigate these problems. Herein, a novel static aerobic composting technology (NSACT) was developed and employed for the composting of cow manure and rice straw mixtures. During the composting process, physicochemical parameters were analyzed to evaluate the quality of compost products, and microbial abundance dynamics were determined using high-throughput sequencing technique. The results showed that NSACT achieved compost maturity within 17 days as the thermophilic stage (≥55 °C) lasted for 11 days. GI, pH, and C/N were 98.71 %, 8.38, and 19.67 in the top layer, 92.32 %, 8.24, and 22.38 in the middle layer, 102.08 %, 8.33, and 19.95 in the bottom layer. These observations indicate compost products maturated and met the requirements of current legislation. Compared with fungi, bacterial communities dominated NSACT composting system. Based on the stepwise verification interaction analysis (SVIA), the novel combination utilization of multiple statistical analyses (Spearman, RDA/CCA, Network modularity, and Path analyses), bacterial genera Norank Anaerolineaceae (-0.9279*), norank Gemmatimonadetes (1.1959*), norank Acidobacteria (0.6137**) and unclassified Proteobacteria (-0.7998*), and fungi genera Myriococcum thermophilum (-0.0445), unclassified Sordariales (-0.0828*), unclassified Lasiosphaeriaceae (-0.4174**), and Coprinopsis calospora (-0.3453*) were the identified key microbial taxa affecting NH4+-N, NO3--N, TKN and C/N transformation in the NSACT composting matrix respectively. This work revealed that NSACT successfully managed cow manure-rice straw wastes and significantly shorten the composting period. Interestingly, most microorganisms observed in this composting matrix acted in a synergistic manner, promoting nitrogen transformation.
Collapse
Affiliation(s)
- Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yonghui Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jining Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiang Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wanying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liyan Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lijun Cheng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wenhao Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingxin Meng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ruixin Bi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mingming Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinda Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhaoxue Gai
- School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China
| | - Shuai Shi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chol Jong
- College of Agriculture, Kimjewon Haeju University of Agriculture, Haeju City, Hwanghae South Province 999093, Republic of Korea
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|