1
|
Fu X, Zuo H, Wang Z, Shang P, Li Z, Li J, Zhan Y, Wang Q, Arslan M, Gamal El-Din M, Chen C. Extreme thermophilic microbial inoculation for reducing NH 3 and N 2O emissions in hyperthermophilic aerobic composting of refinery waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124870. [PMID: 40073472 DOI: 10.1016/j.jenvman.2025.124870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Ammonia (NH3) and nitrous oxide (N2O) release are the main causes of nitrogen loss during aerobic composting. In this study, hyperthermophilic aerobic composting of refinery waste activated sludge (RWAS) was performed by adding extreme thermophilic bacteria, and the effects of inoculation on NH3 and N2O emissions were systematically studied. The results revealed that inoculation achieved hyperthermophilic aerobic composting (T group), increased maturity, and reduced NH3 and N2O emissions by 32.36% and 10.17%, respectively. The results of microbial network analysis and structural equation modeling revealed that inoculation altered the mechanisms influencing NH3 and N2O release. Nitrogen genes and dominant bacteria were positively correlated with NH3 and N2O release during conventional composting (CK group), whereas dominant bacteria and physicochemical factors were the main factors affecting NH3 and N2O release during hyperthermophilic composting(T group). The correlation between the dominant bacteria and the release of NH3 and N2O was weakened in the hyperthermophilic aerobic composting system, resulting in a decrease in the release of the above gases.
Collapse
Affiliation(s)
- Xinge Fu
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Hui Zuo
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Zhouhao Wang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Pengyin Shang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Zhuoyu Li
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jin Li
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yali Zhan
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qinghong Wang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Muhammad Arslan
- Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB, T6G 1H9, Canada
| | | | - Chunmao Chen
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
2
|
Liu B, Guo Z, Chen W, Wang Z, Xu L, Gao S, Wu Y, Zeng Y, Tang B, Wu M, Yin H. Addition of Thermotolerant Nitrifying Bacteria During Pig Manure Composting Enhanced Nitrogen Retention and Modified Microbial Composition. Microorganisms 2025; 13:719. [PMID: 40284556 PMCID: PMC12029871 DOI: 10.3390/microorganisms13040719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/29/2025] Open
Abstract
Preventing loss of nitrogen during aerobic manure composting is a critical challenge, and introducing microbial agents with specific functions offers a promising solution. This study aimed to explore how Bacillus subtilis F2 (a thermotolerant nitrifying bacterium) affects nitrogen conservation, microbial dynamics, and nitrogen conversion-associated gene abundance during pig manure composting. Relative to the uninoculated controls, adding F2 markedly raised the germination index, nitrate content, and total nitrogen in the final compost, resulting in reduced nitrogen loss. The inoculation led to a distinct succession of bacterial communities, enriching microorganisms associated with fermentation and hydrocarbon degradation, while the fungal communities did not change significantly between the control and treated compost. Furthermore, inoculation markedly increased amoA gene levels and decreased nirK abundance during the cooling and maturation phases. Significant relationships were detected between nitrogen content, microbial composition, and nitrogen conversion genes in correlation analyses. In summary, the addition of F2 is recommended for bolstering nitrogen retention in the context of composting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hongmei Yin
- Hunan Institute of Microbiology, Hunan Academy of Agricultural Sciences, Changsha 410009, China; (B.L.)
| |
Collapse
|
3
|
Li Z, Hafeez F, Zhang J, Chen K, Zeng B, Qi F, Yang L, Zhu H. Effect of anaerobic digested sludge biochar on soil quality improvement: An insight into mechanisms, microbial composition, and toxicity risk assessment. CHEMOSPHERE 2025; 370:143948. [PMID: 39674414 DOI: 10.1016/j.chemosphere.2024.143948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Biochar is widely acknowledged for its remarkable impact on soil conditioning. However, the influence of different sources of biochar, particularly anaerobic digested sludge biochar (ADBC) derived from anaerobic digested sludge and biochar derived from waste activated sludge, on alkaline soil remains largely unexplored. To address this knowledge gap, a comprehensive field experiment was conducted over a period of 180 days to investigate the effects of ADBC on slightly alkaline soil. This study evaluated various aspects, including soil properties, nutrient content, microbial composition, and soil toxicity. The results demonstrated significant improvements in the quality of alkaline soil following the application of ADBC. Notably, soil pH decreased from 8.24 to 7.5, while conductivity increased from 56.7 μs/cm to 249.0 μs/cm, total organic carbon from 13.5 g/kg to 19.9 g/kg, available nitrogen from 45.5 g/kg to 237.5 g/kg, and available phosphorus from 549.5 g/kg to 1396.7 g/kg. Moreover, ADBC substantially increased the relative abundance of functional bacteria associated with nutrient cycling, such as Proteobacteria, Actinobacteriota, and Bacteroidota. Conversely, the assessment of biotoxicity revealed a decrease in toxicity with increasing preparation temperature and particle size. These findings highlight the promising potential of ADBC for improving the key properties of alkaline and nutrient-poor soils crucial for overall soil productivity.
Collapse
Affiliation(s)
- Zhuo Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Offshore Environmental Technology & Services Limited, Beijing 100020, China
| | - Farhan Hafeez
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Jing Zhang
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Bizhen Zeng
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Feilan Qi
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Lan Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Xu Z, Li R, KuoK Ho Tang D, Zhang X, Zhang X, Liu H, Quan F. Enhancing nitrogen transformation and humification in cow manure composting through psychrophilic and thermophilic nitrifying bacterial consortium inoculation. BIORESOURCE TECHNOLOGY 2024; 413:131507. [PMID: 39303947 DOI: 10.1016/j.biortech.2024.131507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Excessive nitrogen release during composting poses significant challenges to both the environment and compost quality. Biological enhancement of humification and nitrogen conservation is an environmentally friendly and cost-effective approach to composting. The aim of this study was to develop a psychrophilic and thermophilic nitrifying bacterial consortium (CNB) and investigate its role in nitrogen transformation and humification during cow manure composting. Analysis revealed that CNB inoculation promoted microbial proliferation and metabolism, significantly increased the number of nitrifying bacteria (p < 0.05), and elevated the activity of nitrite oxidoreductase and nxrA gene abundance. Compared to the control, CNB inoculation promoted the formation of NO3--N (77.87-82.35 %), while reducing NH3 (48.89 %) and N2O (20.05 %) emissions, and increased humus content (16.22 %). Mantel analysis showed that the higher abundance of nitrifying bacteria and nxrA facilitated the nitrification of NH4+-N. The improvement in nitrite oxidoreductase activity promoted NO3--N formation, leading to increased humus content and enhanced compost safety.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Ronghua Li
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China; School of Natural Resources and Environment, NWAFU-UA Micro-campus, Yangling, Shaanxi 712100, China
| | - Daniel KuoK Ho Tang
- School of Natural Resources and Environment, NWAFU-UA Micro-campus, Yangling, Shaanxi 712100, China; The University of Arizona (UA), The Department of Environmental Science, Tucson, AZ 85721, USA
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Xin Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
| | - Hong Liu
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Wu H, Zhou J, Zhang S, Gao Y, Wang C, Cong H, Feng S. Contributions of the bacterial communities to the microcystin degradation and nutrient transformations during aerobic composting of algal sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122559. [PMID: 39340886 DOI: 10.1016/j.jenvman.2024.122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Aerobic composting is a useful method for managing and disposing of salvaged algal sludge. To optimize the composting process and improve compost quality, it is necessary to understand the functions and responses of microbial communities therein. This work studied the degradation process of organic matter and the assemblage of bacterial communities in algal sludge composting via 16S rRNA amplicon sequencing. The results showed that 77.08% of the microcystin was degraded during the thermophilic stage of composting, which was the main period for microcystin degradation. Bacterial community composition and diversity changed significantly during the composting, and gradually stabilized as the compost matured. Different composting stages may be dominated by different module groups separately, as shown in the co-occurrence networks of composting bacterial communities. In the networks, all bacteria associated with microcystin degradation were identified as connectors between different module groups. The algal sludge composting process was driven primarily by deterministic processes, and the main driving forces for bacterial community assembly were temperature, dissolved organic carbon, ammonium, and microcystin. At last, by applying the structural equation modeling method, the bacterial communities under influences of physiochemical properties were proved as the main mediators for the microcystin degradation. This study provides valuable insights into the optimization of bacterial communities in composting to improve the efficiency of microcystin degradation and the quality of the compost product.
Collapse
Affiliation(s)
- Hainan Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Jiahui Zhou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Sen Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Yu Gao
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan, 430010, PR China
| | - Chengkai Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Haibing Cong
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China.
| | - Shaoyuan Feng
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| |
Collapse
|
6
|
Xu M, Yu B, Chen Y, Zhou P, Xu X, Qi W, Jia Y, Liu J. Mitigating greenhouse gas emission and enhancing fermentation by phosphorus slag addition during sewage sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122740. [PMID: 39378818 DOI: 10.1016/j.jenvman.2024.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
During the composting of sewage sludge (SS), a quantity of greenhouse gases has been produced. This study aimed to clarify the microbial mechanisms associated with the addition of industrial solid waste phosphorus slag (PS) to SS composting, specifically focusing on its impact on greenhouse gas emissions and the humification. The findings indicated that the introduction of PS increased the temperature and extended the high-temperature phase. Moreover, the incorporation of 10% and 15% PS resulted in a decrease of N2O emissions by 68.9% and 88.6%, respectively. Microbial diversity analysis indicated that PS improved waste porosity, ensuring the aerobic habitat. Therefore, the environmental factors of the system were altered, leading to the enrichment of various functional bacterial species, such as Firmicutes and Chloroflexi, and a reduction of pathogenic bacterium Dokdonella. Consequently, incorporating PS into SS composting represents an effective waste treatment strategy, exhibiting economic feasibility and promising application potential.
Collapse
Affiliation(s)
- Mingyue Xu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Bao Yu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yue Chen
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ping Zhou
- Kunming Dianchi Water Treatment Co., Ltd, Kunming, 650228, China
| | - Xingkun Xu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenzhi Qi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yufeng Jia
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Şahin C, Aydın Temel F, Cagcag Yolcu O, Turan NG. Simulation and optimization of cheese whey additive for value-added compost production: Hyperparameter tuning approach and genetic algorithm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122796. [PMID: 39362168 DOI: 10.1016/j.jenvman.2024.122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Cheese whey is a difficult and costly wastewater to treat due to its high organic matter and mineral content. Although many management strategies are conducted for whey removal, its use in composting is limited. In this study, the effect of cheese whey in the composting of sewage sludge and poultry waste on compost quality and process efficiency was investigated. Also, valid and consistent simulations were developed with Gaussian Process Regression (GPR), Support Vector Regression (SVR), and Neural Network Regression (NNR) Machine Learning (ML) algorithms. The results of all physicochemical parameters determined that 3% of cheese whey addition for both feedstocks improved the composting process's efficiency and the final product's quality. The best results obtained through hyperparameter tuning showed that Gaussian Process Regression (GPR) was the most effective modeling tool providing realistic simulations. The reliability of these simulations was verified by running the GPR process 50 times. MdAPE demonstrated the validity and consistency of the created process simulations. Moreover, a genetic algorithm was used to optimize these dependent simulations and achieved almost 100% desirability. Optimization studies showed that the effective cheese whey ratios were 3.2724% and 3.1543% for sewage sludge and poultry waste, respectively. Optimization results were compatible with the results of experimental studies. This study provides a new strategy for the recovery of cheese whey as well as a new perspective on the effect of cheese whey on both physicochemical parameters and composting phases and the modeling and optimization processes of the results.
Collapse
Affiliation(s)
- Cem Şahin
- Department of Environmental Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, 55200, Turkiye
| | - Fulya Aydın Temel
- Department of Environmental Engineering, Faculty of Engineering, Giresun University, Giresun, 28200, Turkiye.
| | - Ozge Cagcag Yolcu
- Department of Statistics, Faculty of Sciences and Arts, Marmara University, İstanbul, 34722, Turkiye
| | - Nurdan Gamze Turan
- Department of Environmental Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, 55200, Turkiye
| |
Collapse
|
8
|
Jiang J, Hou R, Cui H, Tang Z, Yousif Abdellah YA, Chater CCC, Cheng K, Yu F, Liu D. Removal of artificial sweeteners in wastewater treatment plants and their degradation during sewage sludge composting with micro- and nano-sized kaolin. BIORESOURCE TECHNOLOGY 2024; 406:131060. [PMID: 38950831 DOI: 10.1016/j.biortech.2024.131060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
This study surveyed the fates of artificial sweeteners in influent, effluent, and sewage sludge (SS) in wastewater treatment plant, and investigated the effects of Micro-Kaolin (Micro-KL) and Nano-Kaolin (Nano-KL) on nitrogen transformation and sucralose (SUC) and acesulfame (ACE) degradation during SS composting. Results showed the cumulative rate of ACE and SUC in SS was ∼76 %. During SS composting, kaolin reduced NH3 emissions by 30.2-45.38 %, and N2O emissions by 38.4-38.9 %, while the Micro-KL and Nano-KL reduced nitrogen losses by 14.8 % and 12.5 %, respectively. Meanwhile, Micro-KL and Nano-KL increased ACE degradation by 76.8 % and 84.2 %, and SUC degradation by 75.3 % and 77.7 %, and significantly shifted microbial community structure. Furthermore, kaolin caused a positive association between Actinobacteria and sweetener degradation. Taken together, kaolin effectively inhibited nitrogen loss and promoted the degradation of ACE and SUC during the SS composting, which is of great significance for the removal of emerging organic pollutants in SS.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Rui Hou
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huilin Cui
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhuyu Tang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yousif Abdelrahman Yousif Abdellah
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Caspar C C Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK; Plants, Photosynthesis, and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Ke Cheng
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| |
Collapse
|
9
|
Zhang G, Li W, Wang S, Li D, Zhang D, Lv L. Evaluation of various carbon sources on ammonium assimilation and denitrifying phosphorus removal in a modified anaerobic-anoxic-oxic process from low-strength wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171890. [PMID: 38521280 DOI: 10.1016/j.scitotenv.2024.171890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
A pilot-scale continuous-flow modified anaerobic-anoxic-oxic (MAAO) process examined the impact of external carbon sources (acetate, glucose, acetate/propionate) on ammonium assimilation, denitrifying phosphorus removal (DPR), and microbial community. Acetate exhibited superior efficacy in promoting the combined process of ammonia assimilation and DPR, enhancing both to 50.0 % and 60.0 %, respectively. Proteobacteria and Bacteroidota facilitated ammonium assimilation, while denitrifying phosphorus-accumulating organisms (DPAOs) played a key role in nitrogen (N) and phosphorus (P) removal. Denitrifying glycogen-accumulating organisms (DGAOs) aided N removal in the anoxic zone, ensuring stable N and P removal and recovery. Acetate/propionate significantly enhanced DPR (77.7 %) and endogenous denitrification (37.9 %). Glucose favored heterotrophic denitrification (29.6 %) but had minimal impact on ammonium assimilation. These findings provide valuable insights for wastewater treatment plants (WWTPs) seeking efficient N and P removal and recovery from low-strength wastewater.
Collapse
Affiliation(s)
- Guanglin Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shuncai Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Donghui Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin 150080, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
10
|
Liu Q, Huang B, Hu S, Shi Z, Wu J, Zhang Y, Kong W. Effects of initial corncob particle size on the short-term composting for preparation of cultivation substrates for Pleurotus ostreatus. ENVIRONMENTAL RESEARCH 2024; 248:118333. [PMID: 38295977 DOI: 10.1016/j.envres.2024.118333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 04/19/2024]
Abstract
The short-term composting based on corncob for preparing Pleurotus ostreatus cultivation medium originated from agricultural production practices and so lacked systematic investigation. In this study, the influences of a Dafen (15 mm, DFT) and Xiaofen (5 mm, XFT) initial particle size (IPS) of corncob on the microbial succession and compost quality were examined. Results demonstrated that XFT compost was better suited for mushroom cultivation due to its high biological efficiency of 70 % and the absence of contamination. The composting microbes differed significantly between the DFT and XFT composts. During composting, the genera of Bacillus, Acinetobacter, Lactobacillus, Streptomyces, and Paenibacillus were majorly found in the DFT compost, while Acinetobacter, Lactobacillus, Puccinia, Bacteroides, and Bacillus genera dominated the XFT compost. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that throughout the thermophilic phase, XFT compost had much greater relative abundances of sequences relevant to energy, carbohydrate, and amino acid metabolism than DFT compost. Analysis of network correlations and Mantel tests indicated that IPS reduction could increase microbial interactions. Overall, adjusting the IPS of corncob to 5 mm increased microbial interactions, improved compost quality, and thereby boosted the P. ostreatus yield. These findings will be pertinent in optimizing the composting process of cultivation medium for P. ostreatus.
Collapse
Affiliation(s)
- Qin Liu
- Institute of Edible Fungi, Henan Academy of Agricultural Sciences, Key Laboratory of Evaluation and Utilization of Germplasm Resources of Edible Fungi in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Bao Huang
- Institute of Edible Fungi, Henan Academy of Agricultural Sciences, Key Laboratory of Evaluation and Utilization of Germplasm Resources of Edible Fungi in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Sujuan Hu
- Institute of Edible Fungi, Henan Academy of Agricultural Sciences, Key Laboratory of Evaluation and Utilization of Germplasm Resources of Edible Fungi in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Ziwen Shi
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jie Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuting Zhang
- Institute of Edible Fungi, Henan Academy of Agricultural Sciences, Key Laboratory of Evaluation and Utilization of Germplasm Resources of Edible Fungi in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Weili Kong
- Institute of Edible Fungi, Henan Academy of Agricultural Sciences, Key Laboratory of Evaluation and Utilization of Germplasm Resources of Edible Fungi in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China.
| |
Collapse
|
11
|
Wang S, Xu Z, Xu X, Gao F, Zhang K, Zhang X, Zhang X, Yang G, Zhang Z, Li R, Quan F. Effects of two strains of thermophilic nitrogen-fixing bacteria on nitrogen loss mitigation in cow dung compost. BIORESOURCE TECHNOLOGY 2024; 400:130681. [PMID: 38599350 DOI: 10.1016/j.biortech.2024.130681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Excavating nitrogen-fixing bacteria with high-temperature tolerance is essential for the efficient composting of animal dung. In this study, two strains of thermophilic nitrogen-fixing bacteria, NF1 (Bacillus subtilis) and NF2 (Azotobacter chroococcum), were added to cow dung compost both individually (NF1, NF2) and mixed together (NF3; mixing NF1 and NF2 at a ratio of 1:1). The results showed that NF1, NF2, and NF3 inoculants increased the total Kjeldahl nitrogen level by 38.43%-55.35%, prolonged the thermophilic period by 1-13 d, increased the seed germination index by 17.81%, and the emissions of NH3 and N2O were reduced by 25.11% and 42.75%, respectively. Microbial analysis showed that Firmicutes were the predominant bacteria at the thermophilic stage, whereas Chloroflexi, Proteobacteria, and Bacteroidetes were the predominant bacteria at the mature stage. These results confirmed that the addition of the isolated strains to cow dung composting improved the bacterial community structure and benefited nitrogen retention.
Collapse
Affiliation(s)
- Shaowen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xuerui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Feng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Kang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, PR China
| | - Guoping Yang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling Shaanxi, 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling Shaanxi, 712100, PR China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
12
|
Zhao H, Li S, Pu J, Wang H, Dou X. Effects of Bacillus-based inoculum on odor emissions co-regulation, nutrient element transformations and microbial community tropological structures during chicken manure and sawdust composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120328. [PMID: 38354615 DOI: 10.1016/j.jenvman.2024.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
This study aims to evaluate whether different doses of Bacillus-based inoculum inoculated in chicken manure and sawdust composting will provide distinct effects on the co-regulation of ammonia (NH3) and hydrogen sulfide (H2S), nutrient conversions and microbial topological structures. Results indicate that the Bacillus-based inoculum inhibits NH3 emissions mainly by regulating bacterial communities, while promotes H2S emissions by regulating both bacterial and fungal communities. The inoculum only has a little effect on total organic carbon (TOC) and inhibits total sulfur (TS) and total phosphorus (TP) accumulations. Low dose inoculation inhibits total potassium (TK) accumulation, while high dose inoculation promotes TK accumulation and the opposite is true for total nitrogen (TN). The inoculation slightly affects the bacterial compositions, significantly alters the fungal compositions and increases the microbial cooperation, thus influencing the compost substances transformations. The microbial communities promote ammonium nitrogen (NH4+-N), TN, available phosphorus (AP), total potassium (TK) and TS, but inhibit nitrate nitrogen (NO3--N), TP and TK. Additionally, the bacterial communities promote, while the fungal communities inhibit the nitrite nitrogen (NO2--N) production. The core bacterial and fungal genera regulate NH3 and H2S emissions through the secretions of metabolic enzymes and the promoting or inhibiting effects on NH3 and H2S emissions are always opposite. Hence, Bacillus-based inoculum cannot regulate the NH3 and H2S emissions simultaneously.
Collapse
Affiliation(s)
- Huaxuan Zhao
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Shangmin Li
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China.
| | - Junhua Pu
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Hongzhi Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Xinhong Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| |
Collapse
|
13
|
Zhou SP, Ke X, Jin LQ, Xue YP, Zheng YG. Sustainable management and valorization of biomass wastes using synthetic microbial consortia. BIORESOURCE TECHNOLOGY 2024; 395:130391. [PMID: 38307483 DOI: 10.1016/j.biortech.2024.130391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
In response to the persistent expansion of global resource demands, considerable attention has been directed toward the synthetic microbial consortia (SMC) within the domain of microbial engineering, aiming to address the sustainable management and valorization of biomass wastes. This comprehensive review systematically encapsulates the most recent advancements in research and technological applications concerning the utilization of SMC for biomass waste treatment. The construction strategies of SMC are briefly outlined, and the diverse applications of SMC in biomass wastes treatment are explored, with particular emphasis on its potential advantages in waste degradation, hazardous substances control, and high value-added products conversion. Finally, recommendations for the future development of SMC technology are proposed, and prospects for its sustainable application are discussed.
Collapse
Affiliation(s)
- Shi-Peng Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xia Ke
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
14
|
Wang SP, Sun ZY, An MZ, Wang TT, Xia ZY, Tang YQ. Continuous thermophilic composting of distilled grain waste improved organic matter stability and succession of bacterial community. BIORESOURCE TECHNOLOGY 2024; 394:130307. [PMID: 38199442 DOI: 10.1016/j.biortech.2024.130307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Continuous thermophilic composting (CTC) is potentially helpful in shortening the composting cycle. However, its universal effectiveness and the microbiological mechanisms involved are unclear. Here, the physicochemical properties and bacterial community dynamics during composting of distilled grain waste in conventional and CTC models were compared. CTC accelerated the organic matter degradation rate (0.2 vs. 0.1 d-1) and shortened the composting cycle (24 vs. 65 d), mainly driven by the synergism of bacterial genera. Microbial analysis revealed that the abundance of Firmicutes was remarkably improved compared to that in conventional composting, and Firmicutes became the primary bacterial phylum (relative abundance >70 %) during the entire CTC process. Moreover, correlation analysis demonstrated that bacterial composition had a remarkable effect on the seed germination index. Therefore, controlling the composting process under continuous thermophilic conditions is beneficial for enhancing composting efficiency and strengthening the cooperation between bacterial genera.
Collapse
Affiliation(s)
- Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Ming-Zhe An
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin 644007, China
| | - Ting-Ting Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
15
|
Zhang Z, Zhang H, Qiang H, Liu P, Guo X, Zhu L. Different microbial assemblage colonized on microplastics and clay particles in aerobic sludge treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166473. [PMID: 37659565 DOI: 10.1016/j.scitotenv.2023.166473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2023]
Abstract
In this study, a combination of property analysis and high-throughput sequencing was used to investigate the microbial colonization ability and their community structures and functions in polypropylene microplastics (PPMPs), polystyrene microplastics (PSMPs) and montmorillonite (MMT), respectively as the representatives of artificial and natural substrates in aerobic sludge treatment. After 45 d of incubation, the surface properties of substrates were altered with the increased oxygen functional groups and surface roughness, indicating microbial settlement. Moreover, MPs had different microbial structures from that of MMT, and PSMPs exhibited higher microbial diversity and abundance than PPMPs and MMT. Also, these substrates changed the inherent ecological niche in sludge. Especially, the abundance of some pathogens (e.g., Pseudomonas, Klebsiella and Flavobacterium) was increased in MPs, and the disease risk of Kyoto Encyclopedia of Genes and Genomes metabolic pathway (e.g., Infectious diseases: Bacterial, Infectious diseases: Parasitic and Immune diseases) was higher. Also, the presence of MPs inhibited the decomposition of organic matter including soluble chemical oxygen demand and protein compared to natural substrates. The findings revealed the crucial vector role of MPs for microbes and the effect on aerobic sludge treatment, highlighting the necessity of MP removal in sludge.
Collapse
Affiliation(s)
- Zixuan Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haiyu Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong Qiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China.
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Liu H, Awasthi MK, Zhang Z, Syed A, Bahkali AH, Sindhu R, Verma M. Microbial dynamics and nitrogen retention during sheep manure composting employing peach shell biochar. BIORESOURCE TECHNOLOGY 2023; 386:129555. [PMID: 37499921 DOI: 10.1016/j.biortech.2023.129555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
In this study, the effects of peach shell biochar (PSB) and microbial agent (EM) amendment on nitrogen conservation and bacterial dynamics during sheep manure (SM) composting were examined. Six treatments were performed including T1 (control with no addition), T2 (EM), T3 (EM + 2.5 %PSB), T4 (EM + 5 %PSB), T5 (EM + 7.5 %PSB), and T6 (EM + 10 %PSB). The results showed that the additives amendment reduced NH3 emissions by 6.12%∼32.88% and N2O emissions by 10.96%∼19.76%, while increased total Kjeldahl nitrogen (TKN) content by 8.15-9.13 g/kg. Meanwhile, Firmicutes were the dominant flora in the thermophilic stages, while Proteobacteria, Actinobacteriota, and Bacteroidota were the dominant flora in the maturation stages. The abundance of Bacteroidota and Actinobacteriota were increased by 17.49%∼32.51% and 2.31%∼12.60%, respectively, which can accelerate the degradable organic materials decomposition. Additionally, redundancy analysis showed that Proteobacteria, Actinobacteriota, and Bacteroidota were positively correlated with NO3--N, TKN, and N2O, but a negative correlation with NH3 and NH4+-N. Finally, results confirmed that (EM + 10 %PSB) additives were more effective to reduce nitrogen loss and improve bacterial dynamics.
Collapse
Affiliation(s)
- Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Meenakshi Verma
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, India
| |
Collapse
|
17
|
Jiang W, Li D, Yang J, Ye Y, Luo J, Zhou X, Yang L, Liu Z. A combined passivator of zeolite and calcium magnesium phosphate fertilizer: Passivation behavior and mechanism for Cd (II) in composting. ENVIRONMENTAL RESEARCH 2023; 231:116306. [PMID: 37268202 DOI: 10.1016/j.envres.2023.116306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Passivation of heavy metals is one of the most efficient techniques to improve the quality of compost. Many studies confirmed the passivation effect of passivators (e.g., zeolite and calcium magnesium phosphate fertilizer) on cadmium (Cd), but passivators with single component could not effectively passivate Cd in the long-term operation of composting. In the present study, a combined passivator of zeolite and calcium magnesium phosphate fertilizer (ZCP) was used to explore its impacts of adding at different composting periods (heating period, thermophilic period, cooling period) on the Cd control, compost quality (e.g., temperature, moisture content and humification), microbial community structure as well as the compost available forms of Cd and addition strategy of ZCP. Results showed that Cd passivation rate could be increased by 35.70-47.92% under all treatments in comparison to the control treatment. By altering bacterial community structure, reducing Cd bioavailability and improving the chemical properties of the compost, the combined inorganic passivator could achieve high efficiency for Cd passivation. To sum up, the addition of ZCP at different composting periods has effects on the process and quality of composting, which could provide ideas for the optimization of the passivators addition strategy.
Collapse
Affiliation(s)
- Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Dian Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Junlin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.
| | - Jiwu Luo
- Central & Southern China Municipal Engineering Design and Research Institute Co,Ltd, No. 8 Jiefang Park Rord, Wuhan, 430010, China
| | - Xiaojuan Zhou
- Central & Southern China Municipal Engineering Design and Research Institute Co,Ltd, No. 8 Jiefang Park Rord, Wuhan, 430010, China
| | - Lin Yang
- Wuhan Huantou Solid Waste Operation Co., Ltd, No. 37 Xinye Road, Wuhan, 430024, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, No. 8 Donghu South Road, Wuhan, 430072, China
| |
Collapse
|
18
|
Wang Y, Wang J, Wu X, Zhao R, Zhang Z, Zhu J, Azeem M, Xiao R, Pan J, Zhang X, Li R. Synergetic effect and mechanism of elementary sulphur, MgSO 4 and KH 2PO 4 progressive reinforcement on pig manure composting nitrogen retention. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121934. [PMID: 37263560 DOI: 10.1016/j.envpol.2023.121934] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
The potential of sulphur (S), MgSO4 (Mg), and KH2PO4 (P) in nitrogen retention, ammonia emission decrease, and microbial community succession during composting needs to be investigated. To achieve this, different levels of S (0, 0.2, 0.4, 0.6, and 0.8% in dry weight) plus Mg and P (S + Mg + P) were progressively added in 70 days pig manure aerobic composting. The results revealed that the amendment increased salinity and lowered pH and dephytotoxication of the product with the increase of S amount. However, no significant inhibition effects were observed on the evolution of the thermophilic phase and product maturity. In addition, the amendment significantly reduced the total NH3 and N2O emissions by 29.66%-58.81% and 20.6%-56.7%, increased NH4+ level by 17.22%-73.21% in thermophilic phase and NO3- content by 26.17%-57.48% in a mature phase, and elevated the total Kjeldahl nitrogen content by 34.28%-46.6% during the composting. In addition, compared to the control, the supplement markedly encouraged the formation of guanite in the compost product. The S addition stimulated the growth of Anseongella, Actinomadura, Chelativorans, Castellaniella, Luteimonas, and Steroidobacter microbial communities which functioned well in the degradation of nitrogen-containing compounds and organic matter. Evidence from Redundancy Analysis, Firmicutes, Myxococcus, Chloroflexi, Gemmatimonadota, and Deinococcota showed positive correlations with pH. These results imply that adding S-Mg-P amendment encourages the population and activity of specific functional microorganisms, and facilitated the ammonia emission reduction by lowering pH and thus reserved nitrogen through the formation of guanite during composting. The investigation of bacterial community abundance and environmental variables at the phylum and genus levels over time revealed that adding of 0.6% S in conjunction with P and Mg minerals was suitable for nitrogen loss mitigation in composting. The findings suggest using S + Mg + P supplement to conserve nitrogen in pig dung aerobic composting.
Collapse
Affiliation(s)
- Yang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingwen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ran Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juanjuan Zhu
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Muhammad Azeem
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Punjab 46300, Pakistan
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
Xu M, Sun H, Yang M, Chen E, Wu C, Gao M, Sun X, Wang Q. Effect of biodrying of lignocellulosic biomass on humification and microbial diversity. BIORESOURCE TECHNOLOGY 2023:129336. [PMID: 37343799 DOI: 10.1016/j.biortech.2023.129336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
By optimizing the carbon to nitrogen (C/N) ratio, this study accomplished an improved level of humification and microbial diversity in the biodrying process of lignocellulosic biomass. The results demonstrated that C/N ratio of 20 accelerated the decomposition of refractory lignocellulose, resulting in lower greenhouse gas emissions and the production of highly mature fertilizer with a germination index of 119.0% and a humic index of 3.2. Moreover, C/N ratio of 20 was found to diversify microbial communities, including Pseudogracilibacillus, Sinibacillus, and Georgenia, which contributed to the decomposition of lignocellulosic biomass and the production of humic acid. Hence, it is recommended to regulate the C/N ratio to 20:1 during the biodrying of biogas residue and wood chips to promote the economic feasibility and bioresource recycling.
Collapse
Affiliation(s)
- Mingyue Xu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Enmiao Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaohong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
20
|
Li H, Tan L, Liu W, Li X, Zhang D, Xu Y. Unraveling the effect of added microbial inoculants on ammonia emissions during co-composting of kitchen waste and sawdust: Core microorganisms and functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162522. [PMID: 36868270 DOI: 10.1016/j.scitotenv.2023.162522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Despite the role of microorganisms in nitrogen biotransformation has been extensively explored, how microorganisms mitigate NH3 emissions in the transformation of nitrogen throughout the composting system is rarely addressed. The present study explored the effect of microbial inoculants (MIs) and the contribution of different composted phases (solid, leachate, and gas) on NH3 emissions by constructing a co-composting system of kitchen waste and sawdust with and without the addition of MI. The results showed that NH3 emissions increased markedly after adding MIs, in which the contribution of leachate ammonia volatilization to NH3 emissions was most prominent. The core microorganisms of NH3 emission had a clear proliferation owing to the MIs reshaping community stochastic process. Also, MIs can strengthen the co-occurrence between microorganisms and functional genes of nitrogen to promote nitrogen metabolism. In particular, the abundances of nrfA, nrfH, and nirB genes, which could augment the dissimilatory nitrate reduction process, were increased, thus enhancing NH3 emissions. This study bolsters the fundamental, community-level understanding of nitrogen reduction treatments for agricultural.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wei Liu
- Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Switzerland.
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Switzerland.
| |
Collapse
|
21
|
Bojarski W, Czekała W, Nowak M, Dach J. Production of compost from logging residues. BIORESOURCE TECHNOLOGY 2023; 376:128878. [PMID: 36921643 DOI: 10.1016/j.biortech.2023.128878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The implementation of forest management generates logging residue which can be used in several ways. One of the option is to use of logging residue in the composting process. Therefore, this study determined the possibility of producing compost based on logging residue and the produced fertilizer used to fertilize forest nurseries. Pine chips and sewage sludge were used for carrying out the study. The compost, as well as the leachate produced during composting, were characterized by high NPK content. The leachate collected at the end of the experiment was characterized by nitrogen content of approximately 6500 mg‧dm-3, phosphorus of approximately 450 mg‧dm-3, and potassium of approximately 500-700 mg‧dm-3. In contrast, the compost produced contained approximately 0.57 g‧kg-1 nitrogen, approximately 0.39 g‧kg-1 phosphorus, and approximately 0.24 g‧kg-1 potassium. The disadvantage in terms of the usefulness of the resulting fertilizer in forest nurseries is its pH, which exceeded 9.0.
Collapse
Affiliation(s)
- Wiktor Bojarski
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland.
| | - Wojciech Czekała
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland.
| | - Mateusz Nowak
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland.
| | - Jacek Dach
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland.
| |
Collapse
|
22
|
Aydın Temel F. Evaluation of the influence of rice husk amendment on compost quality in the composting of sewage sludge. BIORESOURCE TECHNOLOGY 2023; 373:128748. [PMID: 36791979 DOI: 10.1016/j.biortech.2023.128748] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to evaluate the influence of rice husk addition on compost quality and maturity in sewage sludge composting using a pilot scale aerated in-vessel reactor. During the composting process, changes in compost quality and physicochemical factors including pH, temperature, moisture content, electrical conductivity, total organic carbon (TOC), total nitrogen (TN), and carbon to nitrogen ratio (C/N) were monitored. In the pile containing 25% rice husk, the lowest losses occurred with 52.49% for TOC and 23.24% for TN, while C/N ratio in the final compost was 18.82, achieving mature and quality compost. The moisture contents of the final composts were found as 50.72% in the control group while it was 31.73% and 28.18% in the reactors containing 10% and 25% rice husk, respectively. These results suggested that rice husk addition was beneficial for reducing moisture content and balancing the C/N ratio in sewage sludge composting.
Collapse
Affiliation(s)
- Fulya Aydın Temel
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun 28200, Turkey
| |
Collapse
|