1
|
Bouramdane Y, Haddad M, Mazar A, Aît Lyazidi S, Oudghiri Hassani H, Boukir A. Aged Lignocellulose Fibers of Cedar Wood (9th and 12th Century): Structural Investigation Using FTIR-Deconvolution Spectroscopy, X-Ray Diffraction (XRD), Crystallinity Indices, and Morphological SEM Analyses. Polymers (Basel) 2024; 16:3334. [PMID: 39684079 DOI: 10.3390/polym16233334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The characterization of lignocellulosic biomass present in archaeological wood is crucial for understanding the degradation processes affecting wooden artifacts. The lignocellulosic fractions in both the external and internal parts of Moroccan archaeological cedar wood (9th, 12th, and 21st centuries) were characterized using infrared spectroscopy (FTIR-ATR deconvolution mode), X-ray diffraction (XRD), and SEM analysis. The XRD demonstrates a significant reduction in the crystallinity index of cellulose from recent to aging samples. This finding is corroborated by the FTIR analysis, which shows a significant reduction in the area profiles of the C-H crystalline cellulosic bands (1374, 1315, and 1265 cm-1) and C-O-C (1150-1000 cm-1). The alterations in the lignin fraction of aging samples (from the 9th and 12th centuries) were demonstrated by a reduction in the intensity of the bands at 1271 and 1232 cm-1 (Car-O) and the formation of new compounds, such as quinones and/or diaryl carbonyl structures, within the 1700-1550 cm-1 range. The SEM images of cedar wood samples from the 9th and 12th centuries reveal voids, indicating that the entire cell wall component has been removed, a characteristic feature of simultaneous white rot fungi. In addition, horizontal "scratches" were noted, indicating possible bacterial activity.
Collapse
Affiliation(s)
- Yousra Bouramdane
- Laboratory of Microbial Biotechnology and Bioactive Molecules LBM2B, Faculty of Sciences and Techniques of Fez, Sidi Mohammed Ben Abdellah University, B.P. 2202, Imouzar Road, Fez 30007, Morocco
| | - Mustapha Haddad
- Laboratory of Spectrometry of Materials and Archaeomaterials LASMAR, Faculty of Sciences, University Moulay Ismail, Meknes 50100, Morocco
| | - Adil Mazar
- Institut Africain de Recherche en Agriculture Durable (ASARI) Laâyoune, University Mohammed 6 Polytechnic UM6P, Ben Guerir 43150, Morocco
| | - Saadia Aît Lyazidi
- Laboratory of Spectrometry of Materials and Archaeomaterials LASMAR, Faculty of Sciences, University Moulay Ismail, Meknes 50100, Morocco
| | - Hicham Oudghiri Hassani
- Laboratory of Engineering, Organometallic, Molecular Materials and Environment (LIMOME), Faculty of Sciences, Sidi Mohammed Ben Abdellah University, Fes 30000, Morocco
| | - Abdellatif Boukir
- Laboratory of Microbial Biotechnology and Bioactive Molecules LBM2B, Faculty of Sciences and Techniques of Fez, Sidi Mohammed Ben Abdellah University, B.P. 2202, Imouzar Road, Fez 30007, Morocco
| |
Collapse
|
2
|
Qin Q, Zeng S, Duan G, Liu Y, Han X, Yu R, Huang Y, Zhang C, Han J, Jiang S. "Bottom-up" and "top-down" strategies toward strong cellulose-based materials. Chem Soc Rev 2024; 53:9306-9343. [PMID: 39143951 DOI: 10.1039/d4cs00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Cellulose, as the most abundant natural polymer on Earth, has long captured researchers' attention due to its high strength and modulus. Nevertheless, transferring its exceptional mechanical properties to macroscopic 2D and 3D materials poses numerous challenges. This review provides an overview of the research progress in the development of strong cellulose-based materials using both the "bottom-up" and "top-down" approaches. In the "bottom-up" strategy, various forms of regenerated cellulose-based materials and nanocellulose-based high-strength materials assembled by different methods are discussed. Under the "top-down" approach, the focus is on the development of reinforced cellulose-based materials derived from wood, bamboo, rattan and straw. Furthermore, a brief overview of the potential applications fordifferent types of strong cellulose-based materials is given, followed by a concise discussion on future directions.
Collapse
Affiliation(s)
- Qin Qin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shiyi Zeng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Ruizhi Yu
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, Zhejiang, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Cao W, Zhang W, Dong L, Ma Z, Xu J, Gu X, Chen Z. Progress on quantum dot photocatalysts for biomass valorization. EXPLORATION (BEIJING, CHINA) 2023; 3:20220169. [PMID: 38264688 PMCID: PMC10742202 DOI: 10.1002/exp.20220169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 01/25/2024]
Abstract
Biomass with abundant reproducible carbon resource holds great promise as an intriguing substitute for fossil fuels in the manufacture of high-value-added chemicals and fuels. Photocatalytic biomass valorization using inexhaustible solar energy enables to accurately break desired chemical bonds or selectively functionalize particular groups, thus emerging as an extremely creative and low carbon cost strategy for relieving the dilemma of the global energy. Quantum dots (QDs) are an outstandingly dynamic class of semiconductor photocatalysts because of their unique properties, which have achieved significant successes in various photocatalytic applications including biomass valorization. In this review, the current development rational design for QDs photocatalytic biomass valorization effectively is highlighted, focusing on the principles of tuning their particle size, structure, and surface properties, with special emphasis on the effect of the ligands for selectively broken chemical bonds (C─O, C─C) of biomass. Finally, the present issues and possibilities within that exciting field are described.
Collapse
Affiliation(s)
- Weijing Cao
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| | - Wenjun Zhang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| | - Lin Dong
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| | - Zhuang Ma
- Leibniz‐Institut für Katalyse e.V.RostockGermany
| | - Jingsan Xu
- School of Chemistry and Physics and Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Xiaoli Gu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| | - Zupeng Chen
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| |
Collapse
|
4
|
Sun W, Lou Z, Xu L, Ma Q, Han H, Chen M, Wang Q, Han J, Li Y. Bioinspired Carbon Superstructures for Efficient Electromagnetic Shielding. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4358-4370. [PMID: 36622958 DOI: 10.1021/acsami.2c21622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Biologically inspired superstructural materials exhibit wide application prospects in many fields, in terms of mitigating increasingly serious electromagnetic (EM) pollution in the civil field. Here, we successfully obtain bamboo slices with uniform pore size distribution through the advanced bamboo transverse splitting technology developed by our group previously and prepare large-scale honeycomb-like carbon-based tubular array (CTA) structures with a controllable pore size, graphitization degree, and selectable conductivity property. Based on the simulation and experimental results, the EM shielding performance of CTAs is proven to be sensitive to the microchannel aperture size and the EM energy incident angle, which is attributed to the difference in the propagation rate of induced electrons in different directions. Among the candidates, CTA-middle-1500 exhibits the best shielding performance against incident EM energy with average SE/ρ values of 123.7 and 144.5 dB cm3 g-1 for perpendicular and parallel directions, respectively, showing its application potential as a lightweight and efficient EM shielding material. The predicted optimal incident angle for CTA-middle-1500 against EM energy radiation is 15°, with the largest RCS reduction value of 26.1 dB m2. The excellent EM shielding performance is attributed to the good reflection capacity involved with the high conductivities of the CTAs.
Collapse
Affiliation(s)
- Wei Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, People's Republic of China
| | - Zhichao Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, People's Republic of China
| | - Lei Xu
- Institute of Agricultural Facilities and Equipment, Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu210014, People's Republic of China
| | - Qianli Ma
- International Center of Bamboo and Rattan, Beijing100102, People's Republic of China
| | - He Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, People's Republic of China
| | - Meiling Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, People's Republic of China
| | - Qiuyi Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, People's Republic of China
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, People's Republic of China
| | - Yanjun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, People's Republic of China
| |
Collapse
|