1
|
Zhang C, Chen H, Xue G. Enhanced nitrogen removal from low C/N ratio wastewater by coordination of ternary electron donors of Fe 0, carbon source and sulfur: Focus on oxic/anoxic/oxic process. WATER RESEARCH 2025; 276:123290. [PMID: 39965445 DOI: 10.1016/j.watres.2025.123290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/17/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Insufficient organics was the major obstacle for total nitrogen (TN) removal in conventional pre-anoxic denitrification when treating low carbon to nitrogen (C/N) ratio wastewater. This study constructed a novel ternary-electron donors (Fe0, organics and S0) enhanced oxic/anoxic/oxic (O/A/O) process, integrating simultaneous nitrification and denitrification and autotrophic denitrification (ADN), and evaluated its feasibility to achieve efficient nutrient removal under organics-deficient condition. Long-term operation results showed that TN removal was lower (9.9 %) when Fe0 added individually, then raised to 27.3 %∼46.0 % in simultaneous presence of Fe0 and organics. And the highest TN removal (82.0 %) was obtained by coordination of ternary-electron donors, with 8.46 ± 0.43 mg/L TN in effluent. Meanwhile, the O/A/O process exhibited excellent total phosphorous (TP) removal (84.8 %∼98.4 %) derived from chemical precipitation by Fe0, of which the effluent was <0.76 ± 0.04 mg/L TP. Metabolic characteristics indicated that the coordination of multi-electron donors improved microbial metabolism and denitrifying enzymatic activities, thereby promoting ammonia assimilation and enhancing TN removal. And the secretion of EPS was also stimulated, which favored the bio-utilization of Fe0 and S0 and alleviated organics dependence. Besides, the notable increase in abundances of aerobic denitrifiers (23.95 %∼27.37 %), autotrophic denitrifiers (9.31 %) and denitrifying genes further verified the synergy effect of multi-electron donors on TN removal. This study revealed the enhancement mechanism of O/A/O process by coordination of ternary-electron donors, verified its cost-effectiveness and provided innovative insights on low C/N ratio wastewater remediation.
Collapse
Affiliation(s)
- Chengji Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Liu Z, Liu X, Wang H, Man S, Yan Q. Ferrihydrite regulated nitrogen metabolic pathway at biocathode of bioelectrochemical system - Insight into biofilm formation and bacterial composition. BIORESOURCE TECHNOLOGY 2025; 424:132275. [PMID: 39986621 DOI: 10.1016/j.biortech.2025.132275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
To further understand the nitrogen metabolism disrupted by anthropogenic activities, 2.5 g/L of ferrihydrite were added into cathodic chamber of bioelectrochemical system to expediate the nitrogen removal process. It was found that the nitrate removal constant was significantly improved and maintained at around 0.09 h-1 with ferrihydrite addition, while the control group maintained only at around 0.05 h-1. Besides, it seemed that the addition of ferrihydrite lead to less biomass accumulation but higher biofilm viability. Meanwhile, ferrihydrite selectively enriched OTUs capable of participating in both iron and nitrogen metabolism, relative abundance of OTU1631 (Thiobacillus) and OTU1467 (Comamonas granuli) was accordingly upped to 58.75 % and 5.11 %, respectively. Moreover, denitrification related genes were enhanced while genes related to nitrogen fixation, dissimilatory nitrate reduction, assimilatory nitrate reduction and nitrification were downregulated, further confirming the redirected electron transfer for the promotion of denitrification.
Collapse
Affiliation(s)
- Zeqi Liu
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaojie Liu
- Shanghai Urban Construction Vocational College, Shanghai 201415, China
| | - Han Wang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China
| | - Shuaishuai Man
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Qun Yan
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China.
| |
Collapse
|
3
|
Wang Y, Chen S, Chen Y, Xu J, Zhou J, He Q, Lin Z, Xu KQ, Fan G. Structure-activity relationship between crystal plane and pyrite-driven autotrophic denitrification efficacy: Electron transfer and metagenome-based microbial mechanism. WATER RESEARCH 2025; 268:122756. [PMID: 39515242 DOI: 10.1016/j.watres.2024.122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Pyrite-driven autotrophic denitrification (PAD) has been recognized as a promising treatment technology for nitrate removal. Although the occurrence of PAD has been found in recent years, there is a knowledge gap about effects of crystal plane of pyrite on the performance and mechanism of PAD system. Here, this study investigated the effects of crystal planes ({100}, {111} and {210}) of single-crystal pyrite on denitrification performance, electron transfer, and microbial mechanism in PAD system. The removal efficiency of nitrate in B-{210} reached 100%, which was 1.67-fold and 2.86-fold higher than that of B-{100} and B-{111}, respectively. X-ray photoelectron spectroscopy and electrochemical results indicated that Fe-S bonds of pyrite with {210} crystal plane were more susceptible to breakage by Fe3+ oxidation assault, and leaching microbially available Fe2+ and sulfur intermediates to drive autotrophic denitrification. Metagenomic results suggested that community of functional pyrite-driven denitrifiers varied in response to crystal plane, and abundances of N-S transformation and EET-related microbes and genes in B-{210} notably up-regulated compared to B-{100} and B-{111}. In addition, this work proposed a dual-mode for electron transfer pathway during pyrite oxidation and nitrogen transformation in PAD system. In B-{210}, Fe(II)- and sulfur-driven denitrifiers obtained electron after pyrite oxidation-dissolution, and the enrichment of pyrite-oxidizing bacteria in B-{210} could enhance the electron transfer from pyrite through electron shuttles. This work highlighted that stronger surface reactivity and electron shuttle effect in B-{210} enhanced electron transfer, leading to favorable PAD performance in B-{210}. Overall, this study provides novel insights into the structure-activity relationship between the crystal plane structure of pyrite and denitrification activity in PAD system.
Collapse
Affiliation(s)
- Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Shi Chen
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Yuanjing Chen
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Junge Xu
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ziyuan Lin
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China
| | - Kai-Qin Xu
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, PR China.
| |
Collapse
|
4
|
Li Z, Li D, Liu S, Zhao H, Li B, Shan S, Zhu Y, Sun J, Hou J. Impact of elevated CO 2 on microbial communities and functions in riparian sediments: Role of pollution levels in modulating effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176481. [PMID: 39341255 DOI: 10.1016/j.scitotenv.2024.176481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/14/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
The impact of elevated CO2 levels on microorganisms is a focal point in studying the environmental effects of global climate change. A growing number of studies have demonstrated the importance of the direct effects of elevated CO2 on microorganisms, which are confounded by indirect effects that are not easily identified. Riparian zones have become key factor in identifying the environmental effects of global climate change because of their special location. However, the direct effects of elevated CO2 levels on microbial activity and function in riparian zone sediments remain unclear. In this study, three riparian sediments with different pollution risk levels of heavy metals and nutrients were selected to explore the direct response of microbial communities and functions to elevated CO2 excluding plants. The results showed that the short-term effects of elevated CO2 did not change the diversity of the bacterial and fungal communities, but altered the composition of their communities. Additionally, differences were observed in the responses of microbial functions to elevated CO2 levels among the three regions. Elevated CO2 promoted the activities of nitrification and denitrification enzymes and led to significant increases in N2O release in the three sediments, with the greatest increase of 76.09 % observed in the Yuyangshan Bay (YYS). Microbial carbon metabolism was promoted by elevated CO2 in YYS but was significantly inhibited by elevated CO2 in Gonghu Bay and Meiliang Bay. Moreover, TOC, TN, and Pb contents were identified as key factors contributing to the different microbial responses to elevated CO2 in sediments with different heavy metal and nutrient pollution. In conclusion, this study provides in-depth insights into the responses of bacteria and fungi in polluted riparian sediments to elevated CO2, which helps elucidate the complex interactions between microbial activity and environmental stressors.
Collapse
Affiliation(s)
- Ziyu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Songqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huilin Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sujie Shan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yizhi Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jingqiu Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
5
|
Tong H, Xiong J. Effect of carbaryl contamination on bioretention system nitrogen removal performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56227-56235. [PMID: 39259329 DOI: 10.1007/s11356-024-34919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Stormwater runoff is the main source of carbaryl in natural waters; bioretention cells can effectively retain and remove carbaryl from stormwater runoff. However, the accumulation of carbaryl in the bioretention cell impacts its stormwater purification ability, especially nitrogen removal performance. To investigate the mechanisms behind the influence of carbaryl in stormwater runoff on the nitrogen removal performance of bioretention cells, the purification of carbaryl in bioretention facilities was compared under four carbaryl concentrations (0, 0.5, 1.0, and 2.0 mg/L); the effects of carbaryl input on nitrogen removal and the microbial community structure inside the filler were analyzed. After entering the bioretention cell, carbaryl was mainly adsorbed within the filler at a depth of 10-30 cm, and the desorption-adsorption process continued during subsequent rainfall. Carbaryl input negatively affected the denitrification performance of the bioretention cell. The removal rate of nitrate nitrogen (NO3--N) decreased by 61.13-100.09%, and that of total nitrogen (TN) was reduced by 24.82-38.95%. Carbaryl accumulation reduced the abundance and diversity of microorganisms in the bioretention cell. The relative abundance of some denitrifying bacteria genera (Terrimonas, Bdellovibrio, Aquabacterium, Ohtaekwangia, Sphingomonas, and SWB02) also decreased, which was the main reason for the decrease in the nitrogen removal performance.
Collapse
Affiliation(s)
- Hao Tong
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, P.R. China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Jiaqing Xiong
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, P.R. China.
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China.
| |
Collapse
|
6
|
Lu Z, Cheng X, Xie J, Li Z, Li X, Jiang X, Zhu D. Iron-based multi-carbon composite and Pseudomonas furukawaii ZS1 co-affect nitrogen removal, microbial community dynamics and metabolism pathways in low-temperature aquaculture wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119471. [PMID: 37913618 DOI: 10.1016/j.jenvman.2023.119471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Aerobic denitrification is the key process in the elimination of nitrogen from aquaculture wastewater, especially for wastewater with high dissolved oxygen and low carbon/nitrogen (C/N) ratio. However, a low C/N ratio, especially in low-temperature environments, restricts the activity of aerobic denitrifiers and decreases the nitrogen elimination efficiency. In this study, an iron-based multi-solid carbon source composite that immobilized aerobic denitrifying bacteria ZS1 (IMCSCP) was synthesized to treat aerobic (DO > 5 mg/L), low temperature (<15 °C) and low C/N ratio (C/N = 4) aquaculture wastewater. The results showed that the sequencing batch biofilm reactor (SBBR) packed with IMCSCP exhibited the highest nitrogen removal performance, with removal rates of 95.63% and 85.44% for nitrate nitrogen and total nitrogen, respectively, which were 33.03% and 30.75% higher than those in the reactor filled with multi-solid carbon source composite (MCSC). Microbial community and network analysis showed that Pseudomonas furukawaii ZS1 successfully colonized the SBBR filled with IMCSCP, and Exiguobacterium, Cellulomonas and Pseudomonas were essential for the nitrogen elimination. Metagenomic analysis showed that an increase in gene abundance related to carbon metabolism, nitrogen metabolism, extracellular polymer substance synthesis and electron transfer in the IMCSCP, enabling denitrification in the SBBR to be achieved via multiple pathways. The results of this study provided new insights into the microbial removal mechanism of nitrogen in SBBR packed with IMCSCP at low temperatures.
Collapse
Affiliation(s)
- Zhuoyin Lu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China.
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhifei Li
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Xiangyang Li
- Guanghuiyuan Hydraulic Construction Engineering Co., Ltd., Shenzhen, 518020, China; Guangdong Engineering Technology Research Center of Smart and Ecological River, Guangzhou, 510640, China
| | - Xiaotian Jiang
- Guanghuiyuan Hydraulic Construction Engineering Co., Ltd., Shenzhen, 518020, China
| | - Dantong Zhu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
7
|
Cao G, Gao J, Song J, Jia X, Liu Y, Niu J, Yuan X, Zhao Y. Performance and mechanism of chromium reduction in denitrification biofilm system with different carbon sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167191. [PMID: 37741376 DOI: 10.1016/j.scitotenv.2023.167191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
In the process of biological reduction of Cr(VI), the type of carbon sources affects the rate and effect of Cr(VI) reduction, but its specific performance and influencing mechanism have not yet been explored. In this study, four denitrification biofilm reactors were operated under four common carbon sources (C6H12O6, CH3COONa, CH3OH, CH3COONa:C6H12O6 1:1) to reveal the impact of carbon sources on Cr(VI) reduction. Through preliminary experimental concentration research, 75 mg/L Cr(VI) was selected as the dosing concentration. In long-term operation, the composite carbon sources of CH3COONa and C6H12O6 demonstrated excellent stability and achieved an impressive Cr(VI) removal efficiency of 99.5 %. The following sequence was C6H12O6, CH3COONa, and CH3OH. Among them, CH3OH was less competitive and the system was severely unbalanced with lowest Cr(VI) reduction efficiency. The toxicity reactions, changes in EPS and its functional groups, and electron transfer revealed the reduction and fixation mechanism of chromium on denitrification biofilm. The changes in microbial communities indicated that microbial communities in composite carbon sources can quickly adapt to the high toxic environment. The proportion of Trichococcus reached 43.6 %, which played an important role in denitrification and Cr(VI) reduction. Meanwhile, the prediction of microbial COG function reflected its excellent metabolic ability and defense mechanism.
Collapse
Affiliation(s)
- Ge Cao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Junzhi Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xvlong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Yuan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
8
|
Feng ZT, Ma X, Sun YJ, Zhou JM, Liao ZG, He ZC, Ding F, Zhang QQ. Promotion of nitrogen removal in a denitrification process elevated by zero-valent iron under low carbon-to-nitrogen ratio. BIORESOURCE TECHNOLOGY 2023; 386:129566. [PMID: 37506936 DOI: 10.1016/j.biortech.2023.129566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The nitrogen removal efficiency and distribution of microbial community in a denitrification process aided by zero-valent iron (ZVI) under low carbon-to-nitrogen ratio (C/N) were assessed in this study. Experimental results demonstrated that the nitrogen removal efficiency (TNRE) increased to 96.4 ± 2.72% and 63.3 ± 4.02% after continuous addition of ZVI with molar ratio of ZVI to nitrate (NO3--N) (ZVI/N) of 6 at C/N of 3 and 2, respectively, which was 4% and 7.7% higher than the blank one. Meanwhile, extracellular polymeric substance (EPS) could be used as electron transfer medium and endogenous carbon source for denitrification system and also the production of which increased by 28.43% and 53.10% under ZVI stimulation compared to the control group. Finally, a symbiotic system composed by autotrophic and heterotrophic denitrification bacteria was formed by aid of ZVI. This study proposed new insights into denitrification process improved by ZVI.
Collapse
Affiliation(s)
- Ze-Tong Feng
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Xin Ma
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Ying-Jun Sun
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Jia-Min Zhou
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Zu-Gang Liao
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Zhi-Cong He
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Fei Ding
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Qian-Qian Zhang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
9
|
Feng H, Yang W, Zhang Y, Ding Y, Chen L, Kang Y, Huang H, Chen R. Electroactive microorganism-assisted remediation of groundwater contamination: Advances and challenges. BIORESOURCE TECHNOLOGY 2023; 377:128916. [PMID: 36940880 DOI: 10.1016/j.biortech.2023.128916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Groundwater contamination has become increasingly prominent, therefore, the development of efficient remediation technology is crucial for improving groundwater quality. Bioremediation is cost-effective and environmentally friendly, while coexisting pollutant stress can affect microbial processes, and the heterogeneous character of groundwater medium can induce bioavailability limitations and electron donor/acceptor imbalances. Electroactive microorganisms (EAMs) are advantageous in contaminated groundwater because of their unique bidirectional electron transfer mechanism, which allows them to use solid electrodes as electron donors/acceptors. However, the relatively low-conductivity groundwater environment is unfavorable for electron transfer, which becomes a bottleneck problem that limits the remediation efficiency of EAMs. Therefore, this study reviews the recent advances and challenges of EAMs applied in the groundwater environment with complex coexisting ions, heterogeneity, and low conductivity and proposes corresponding future directions.
Collapse
Affiliation(s)
- Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Wanyue Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Ying Kang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Huan Huang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
10
|
Wu T, Zhong L, Pang JW, Ren NQ, Ding J, Yang SS. Effect of Fe3+ on the nutrient removal performance and microbial community in a biofilm system. Front Microbiol 2023; 14:1140404. [PMID: 37089551 PMCID: PMC10117941 DOI: 10.3389/fmicb.2023.1140404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
In this study, the influence of Fe3+ on N removal, microbial assembly, and species interactions in a biofilm system was determined. The results showed that maximum efficiencies of ammonia nitrogen (NH4+-N), total nitrogen (TN), phosphorus (P), and chemical oxygen demand (COD) removal were achieved using 10 mg/L Fe3+, reaching values of 100, 78.85, 100, and 95.8%, respectively, whereas at concentrations of 15 and 30 mg/L Fe3+ suppressed the removal of NH4+-N, TN, and COD. In terms of absolute abundance, the expression of bacterial amoA, narG, nirK, and napA was maximal in the presence of 10 mg/L Fe3+ (9.18 × 105, 8.58 × 108, 1.09 × 108, and 1.07 × 109 copies/g dry weight, respectively). Irrespective of Fe3+ concentrations, the P removal efficiency remained at almost 100%. Candidatus_Competibacter (10.26–23.32%) was identified as the most abundant bacterial genus within the system. Determinism (50%) and stochasticity (50%) contributed equally to microbial community assembly. Co-occurrence network analysis revealed that in the presence of Fe3+, 60.94% of OTUs in the biofilm system exhibited positive interactions, whereas 39.06% exhibited negative interactions. Within the OTU-based co-occurrence network, fourteen species were identified as key microbes. The stability of the system was found to be predominantly shaped by microbial cooperation, complemented by competition for resources or niche incompatibility. The results of this study suggested that during chemical P removal in wastewater treatment plants using biofilm methods, the concentration of supplemental Fe3+ should be maintained at 10 mg/L, which would not only contribute to P elimination, but also enhance N and COD removal.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
- *Correspondence: Jie Ding,
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
- Shan-Shan Yang,
| |
Collapse
|