1
|
Feng C, Liang Z, Liao X, Lin K, Zhai Y, Liu G, Malpei F, Hu A. Microbial Dynamics on Different Microplastics in Coastal Urban Aquatic Ecosystems: The Critical Roles of Extracellular Polymeric Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40392941 DOI: 10.1021/acs.est.5c03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Microplastics (MPs) serve as carriers for microbial community colonization, forming unique ecosystems known as plastispheres in urban aquatic ecosystems. However, interactions among microbes, extracellular polymeric substances (EPS), and MPs remain poorly understood. This study investigates microbial consortia and their EPS secretion behaviors across various plastispheres at two representative coastal urban water sites. Permutational multivariate analysis of variance revealed that MP type significantly influenced microbial community structures in reservoir environments (R2 = 0.60, p < 0.001), highlighting the pronounced impact of MP types in high-quality urban waters. Specific microbial phyla and genera were identified as key contributors to EPS compositional variations across different plastispheres. Hierarchical partitioning results identified Acidobacteria, Nitrospirae, and Planctomycetes as influential phyla positively affecting EPS composition. Spearman correlation analysis pinpointed Robiginitialea (positive correlation) and Fimbriiglobus (negative correlation) as critical genera influencing EPS dynamics. Moreover, EPS-related gene abundance corresponded closely with observed EPS compositional differences. Dominant genes associated with protein biosynthesis included xapD in reservoirs and glnA in bays, while glmS and eno were predominant for polysaccharide biosynthesis in bays. This research advances our understanding of microbial-EPS-MP interactions in urban water systems, offering critical insights into ecological remediation and risk assessment of MP pollution.
Collapse
Affiliation(s)
- Cuijie Feng
- Center for Water Resources and Environment, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ziyan Liang
- Center for Water Resources and Environment, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xin Liao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, PR China
| | - Kairong Lin
- Center for Water Resources and Environment, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yujia Zhai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Gang Liu
- Key Lab of Aquatic Chemistry, State Key Lab of Regional Environment, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sanitary engineering, Department of Water Management, Delft University of Technology, Delft 2628 CN, The Netherlands
| | - Francesca Malpei
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milan 20133, Italy
| | - Anyi Hu
- Carbon Neutral Innovation Research Center and Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361105, PR China
| |
Collapse
|
2
|
Huang Y, Hu J, Zheng J, Bai Z, Chen H, Ge X, Tang T, Zhang Y, Ma Y, Luo H, Li L, Ning X. A review of microbial degradation of perfluorinated and polyfluoroalkyl substances (PFAS) during waste biotransformation processes: influencing factors and alleviation measures. ENVIRONMENTAL RESEARCH 2025; 279:121795. [PMID: 40340003 DOI: 10.1016/j.envres.2025.121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/27/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are stable synthetic compounds that pose significant risks to humans and tend to accumulate during the biotransformation of municipal waste. Although physical and chemical methods can effectively remove PFASs, their high costs and susceptibility to secondary contamination have limited broader adoption. Microbial degradation of PFASs is an environmentally friendly and cost-effective approach, making it a highly promising method for removing PFASs in municipal waste biotransformation. This paper summarizes recent advancements in the mechanisms of PFASs removal in common waste biotransformation processes, such as composting, anaerobic digestion and biological wastewater treatment. Microorganisms remove PFAS from municipal waste mainly through adsorption and biodegradation. We suggest that the type of PFAS, the coexistence of multiple emerging pollutant and PFAS, and the nutrients provided by municipal waste are the key factors influencing microbial degradation of PFAS. We consider that in situ enrichment of microorganisms capable of degrading PFAS is an effective way to mitigate the inhibitory effect of PFAS on waste biotransformation. Also, the addition of adsorbent materials, the application of voltage, and the addition of quorum-sensing signalling molecules in combination with biodegradation can improve the effectiveness of biodegradation of PFAS. In this study, we look forward to the future research direction to understand the key metabolic pathways of microbial degradation of PFAS using isotope tracer method. This review provides new insights for efficient biotransformation of municipal waste and effective removal of PFAS.
Collapse
Affiliation(s)
- Yuanming Huang
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 643000, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jialun Hu
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 643000, China; Gongxian Haitian Water Co., Ltd., Yibin, Sichuan, 644500, China
| | - Jia Zheng
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin, 644007, China; Wuliangye Yibin Co., Ltd., Yibin, Sichuan, 644000, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hao Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xiaopeng Ge
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tang Tang
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 643000, China
| | - Yao Zhang
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 643000, China
| | - Yi Ma
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 643000, China
| | - Huibo Luo
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 643000, China
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xinqiang Ning
- Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 643000, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
3
|
Fan W, Wei B, Zhu Y, Lu X, Wang Q, Zhao S, Jia W. Deciphering anammox response characteristics and potential mechanisms to polyethylene terephthalate microplastic exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136044. [PMID: 39378591 DOI: 10.1016/j.jhazmat.2024.136044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Microplastics (MPs) are frequently detected in the wastewater. Herein, the short-term and long-term effects of polyethylene terephthalate (PET) MPs on anammox granular sludge were investigated and the potential response mechanisms were analyzed. Results showed that although short-term exposure of anammox granular sludge to PET-MPs induced a stress response, the nitrogen removal performance was not significantly affected. By contrast, long-term exposure to PET-MPs inhibited nitrogen removal performance with increased exposure time and PET-MP concentration. The total nitrogen removal efficiency (TNRE) decreased by 28.7 % when sludge was exposed to 200 mg/L of PET-MPs. However, the anammox activity recovered with prolonged operation time, and approximately 87 % of the initial TNRE was recovered after three months. Microbial community evolution and metabolic exchange variations were the potential response mechanisms of anammox granular sludge to PET-MP exposure, with PET-MP exposure decreasing the anammox bacteria growth rate and relative symbiotic bacterial abundance in the anammox consortia and hindering cross-feeding pathways. The findings of this study provide novel insight into anammox behavior when treating wastewater containing PET-MPs.
Collapse
Affiliation(s)
- Wenli Fan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Boya Wei
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yuxiao Zhu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xinyue Lu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Qian Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Shuang Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Wenlin Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
4
|
Liu Y, Wu Y, Zhao Y, Niu J, Wang Q, Bamanu B, Hussain A, Liu Y, Tong Y, Li YY. Multidimensional Insights into Organics Stress on Anammox systems: From a "Molecule-Cell-Ecology" Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20768-20784. [PMID: 39468881 DOI: 10.1021/acs.est.4c02781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is efficient and cost-effective for treating high-strength ammonia wastewater, but the organics in wastewater will affect its stability. To address this challenge, it is crucial to gain a deep understanding of the inhibitory effects and mechanisms of organics stress on anammox bacteria. The review provided a comprehensive classification of organics and evaluated their specific effects on the anammox system according to their respective characteristics. Based on the micro to macro perspective, the "molecule-cell-ecology" inhibitory mechanism of organics on anammox bacteria was proposed. The molecular observation systematically summarized the binding process and action sites of organics with anammox bacteria. At the cellular observation, the mechanisms of organics effects on extracellular polymeric substances, membranes, and anammoxosome of anammox bacteria were also expounded. At the ecological observation, the dynamic changes in coexisting populations and their role in organics transformation were further discussed. Further revelations on response mechanisms and inhibition mitigation strategies were proposed to broaden the applicability of anammox systems for organic wastewater. This review offered a multidimensional understanding of the organics inhibitory mechanism of anammox bacteria and provided a theoretical foundation for anammox systems.
Collapse
Affiliation(s)
- Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Arif Hussain
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
5
|
Xian Y, Lu Y, Wang Z, Lu Y, Han J, Zhou G, Chen Z, Lu Y, Su C. Removal of organic matter from food wastewater using anaerobic digestion at low temperatures enhanced by exogenous signaling molecule N-hexanoyl-homoserine lactone enhancement: Insight to extracellular polymeric substances and key functional genes. CHEMOSPHERE 2024; 364:143024. [PMID: 39111677 DOI: 10.1016/j.chemosphere.2024.143024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/23/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
This experiment aimed to study the effects of adding the exogenous signaling molecule N-hexanoyl-homoserine lactone (C6-HSL) on the anaerobic digestion of food wastewater at low temperature (15 °C). Daily addition of 0.4 μmol C6-HSL increased the average chemical oxygen demand removal from 45.98% to 94.92%, while intermittent addition (adding 2 μmol C6-HSL every five days) increased it from 45.98% to 72.44%. These two modes of C6-HSL addition increased protease and acetate kinase activity by 47.99%/8.04% and 123.26%/127.91% respectively, and increased coenzyme F420 concentrations by 15.79% and 63.16%, respectively. The regulation of loosely bound extracellular polymeric substances synthesis was influenced by C6-HSL, which increased protein and polysaccharide content in sludge. The relative abundance of Firmicutes and Bacteroidetes increased following addition of C6-HSL. After continuous addition of C6-HSL, the relative abundance of related functional genes such as amy, apgM, aceE, and accC increased, indicating that methanogens obtained sufficient substrate. The abundance of glycolysis-related functional genes such as glk, pfk, pgi, tpiA, gap, pgk, gpmA, eno, and pyk increased after the addition of C6-HSL, ensuring the efficient transformation and absorption of organic matter by anaerobic sludge at low temperatures. This study provides new comprehensive insights into the mechanism behind the enhancement of food wastewater anaerobic digestion by C6-HSL at low temperature.
Collapse
Affiliation(s)
- Yunchuan Xian
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yingqi Lu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zi Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Yiying Lu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Jinglong Han
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Guangrong Zhou
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zhengpeng Chen
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China.
| |
Collapse
|
6
|
Wang S, Tian Y, Bi Y, Meng F, Qiu C, Yu J, Liu L, Zhao Y. Recovery strategies and mechanisms of anammox reaction following inhibition by environmental factors: A review. ENVIRONMENTAL RESEARCH 2024; 252:118824. [PMID: 38588911 DOI: 10.1016/j.envres.2024.118824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is a promising biological method for treating nitrogen-rich, low-carbon wastewater. However, the application of anammox technology in actual engineering is easily limited by environmental factors. Considerable progress has been investigated in recent years in anammox restoration strategies, significantly addressing the challenge of poor reaction performance following inhibition. This review systematically outlines the strategies employed to recover anammox performance following inhibition by conventional environmental factors and emerging pollutants. Additionally, comprehensive summaries of strategies aimed at promoting anammox activity and enhancing nitrogen removal performance provide valuable insights into the current research landscape in this field. The review contributes to a comprehensive understanding of restoration strategies of anammox-based technologies.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yu Tian
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China.
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
7
|
He S, Zhao L, Feng L, Zhao W, Liu Y, Hu T, Li J, Zhao Q, Wei L, You S. Mechanistic insight into the aggregation ability of anammox microorganisms: Roles of polarity, composition and molecular structure of extracellular polymeric substances. WATER RESEARCH 2024; 254:121438. [PMID: 38467096 DOI: 10.1016/j.watres.2024.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
The chemical characteristics of extracellular polymeric substances (EPS) of anammox bacteria (AnAOB) play a crucial role in the rapid enrichment of AnAOB and the stable operation of wastewater anammox processes. To clarify the influential mechanisms of sludge EPS on AnAOB aggregation, multiple parameters, including the polarity distribution, composition, and molecular structure of EPS, were selected, and their quantitative relationship with AnAOB aggregation was analyzed. Compared to typical anaerobic sludge (anaerobic floc and granular sludge), the anammox sludge EPS exhibited higher levels of tryptophan-like substances (44.82-56.52 % vs. 2.57-39.81 %), polysaccharides (40.02-53.49 mg/g VSS vs. 30.22-41.69 mg/g VSS), and protein structural units including α-helices (20.70-23.98 % vs. 16.48-19.32 %), β-sheets (37.43-42.98 % vs. 25.78-36.72 %), and protonated nitrogen (Npr) (0.065-0.122 vs. 0.017-0.061). In contrast, it had lower contents of β-turns (20.95-27.39 % vs. 28.17-39.04 %). These biopolymers were found to originate from different genera of AnAOB. Specifically, the α-helix-rich proteins were mainly derived from Candidatus Kuenenia, whereas the extracellular proteins related to tryptophan and Npr were closely associated with Candidatus Brocadia. Critically, these EPS components could drive anammox aggregation through interactions. Substantial amounts of tryptophan-like substances facilitated the formation of β-sheet structures and the exposure of internal hydrophobic clusters, which benefited the anammox aggregation. Meanwhile, extracellular proteins with high Npr content played a pivotal role in the formation of mixed protein-polysaccharide gel networks with the electronegative regions of polysaccharides, which could be regarded as the key component in the maintenance of anammox sludge stability. These findings provide a comprehensive understanding of the multifaceted roles of EPS in driving anammox aggregation and offer valuable insights into the development of EPS regulation strategies aimed at optimizing the anammox process.
Collapse
Affiliation(s)
- Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lingxin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|