1
|
Duan S, He J, Zhong Y, Li L, Zou X, Cai Q, Zhang R, Cui X, Zhao Y, Liu Y, Zhang J. Enhancing anaerobic digestion of sludge with dual-heteroatom-doped biochar derived from digested sludge: In-situ reuse of anaerobic residues for system self-circulation. ENVIRONMENTAL RESEARCH 2025; 274:121303. [PMID: 40049351 DOI: 10.1016/j.envres.2025.121303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 05/04/2025]
Abstract
The effectiveness of biochar as a promoter in the anaerobic digestion (AD) of complex organic matter is constrained by its limited surface reactive sites. However, heteroatom doping can enhance the surface functional groups and defect structures of biochar, improving its electron exchange capacity and potential to promote AD. Dual-heteroatom-doped biochar derived from digested sludge (DH-DSBC) focused on stimulating the acetogenic-methanogenic stage of sludge AD. The addition of DH-DSBC accelerated the utilization and conversion of organic matter in the AD system and increased the concentration of methanogenesis-related enzymes (coenzyme F420), ultimately boosting methane production by 52-60%. Additionally, the methane conversion rate increased by 60-69%. The enrichment of electroactive bacteria and Methanothrix (formerly Methanosaeta)/Methanosarcina suggests that DH-DSBC may facilitate direct interspecies electron transfer, as supported by the observed increase in sludge electrical conductivity and elevated electron transfer system activity. This study provides insights into the practical reuse of anaerobic residues in-situ and contributes to achieving self-circulation in AD systems.
Collapse
Affiliation(s)
- Shengye Duan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Yijie Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Xiang Zou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Qiupeng Cai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ruimiao Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xinxin Cui
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Yuanyi Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Yunlong Liu
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
2
|
Zhang J, Liu H, Wu J, Chen C, Ding Y, Liu H, Zhou Y. Rethinking the biochar impact on the anaerobic digestion of food waste in bench-scale digester: Spatial distribution and biogas production. BIORESOURCE TECHNOLOGY 2025; 420:132115. [PMID: 39863181 DOI: 10.1016/j.biortech.2025.132115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
The improvement of biogas production in anaerobic digestion (AD) by biochar introduction has been demonstrated. However, the distribution of biochar in the digester and its effect on AD have been seldom explored. In this study, the distribution of biochar and their impact on AD were investigated in a 30 L semi-continuously operated bench-scale anaerobic digester. The results demonstrated that the biochar significantly increased biogas yields by 23.38 % under an organic loading rate (OLR) of 3.0 g VS/L·d. The stability of the AD under an OLR of 4.0 g VS/L·d was also improved by biochar introduction. The increased stirring speed of the digester enhanced the spatial distribution uniformity of biochar and increased biogas production by 5.89 %. Reducing the particle size of biochar improved its spatial distribution uniformity but did not significantly increase biogas production, likely due to excessive microbial accumulation on the biochar, which have caused substrate competition. Biochar aided AD by boosting microbial genera of Syntrophomonas, Bacteroidota, Cloacimonadot, and Methanosaeta, accelerating volatile fatty acids consumption, and improving microorganisms' spatial ecological niches. The economic analysis showed that applying residue-based biochar for biogas production presented superior benefits and greater development potential than residue incineration in the food waste AD process. Overall, this study presented a novel and comprehensive understanding of the biochar distribution and impact on food waste AD in digesters.
Collapse
Affiliation(s)
- Jing Zhang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - He Liu
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Junyao Wu
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Chongjun Chen
- Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Yan Ding
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Hongbo Liu
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| |
Collapse
|
3
|
Ighalo JO, Ohoro CR, Ojukwu VE, Oniye M, Shaikh WA, Biswas JK, Seth CS, Mohan GBM, Chandran SA, Rangabhashiyam S. Biochar for ameliorating soil fertility and microbial diversity: From production to action of the black gold. iScience 2025; 28:111524. [PMID: 39807171 PMCID: PMC11728978 DOI: 10.1016/j.isci.2024.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process. The alkaline nature of biochar is attributed to surface functional groups and addresses soil acidity issues. The porous structure and oxygen-containing functional groups contribute to soil microbial adhesion, affecting soil health and nutrient availability, improving plant root morphology, photosynthetic pigments, enzyme activities, and growth even under salinity stress conditions. The review underscores the potential of biochar to address diverse agricultural challenges, emphasizing the need for further research and application-specific considerations.
Collapse
Affiliation(s)
- Joshua O. Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka P. M. B. 5025, Nigeria
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Chinemerem R. Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa
| | - Victor E. Ojukwu
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka P. M. B. 5025, Nigeria
| | - Mutiat Oniye
- Department of Chemical and Material Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Wasim Akram Shaikh
- Department of Basic Science, School of Science and Technology, The Neotia University, Sarisha, West Bengal 743368, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), International Centre for Ecological Engineering & Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | | | - Ganesh Babu Malli Mohan
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, USA
| | - Sam Aldrin Chandran
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Selvasembian Rangabhashiyam
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| |
Collapse
|
4
|
Chicaiza-Ortiz C, Zhang P, Zhang J, Zhang T, Yang Q, He Y. CO₂-enhanced methane production by integration of bamboo biochar during anaerobic co-digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123603. [PMID: 39642842 DOI: 10.1016/j.jenvman.2024.123603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
This study investigates the enhancement of methane production in anaerobic co-digestion (AcoD) through the introduction of exogenous CO₂ and the application of bamboo biochar. Exogenous CO₂ boosts biogas yield by providing an additional carbon source, which requires optimized solubility and pH buffering to ensure effective methanation. Biochar serves as an electron shuttle and pH stabilizer, facilitating CO2 solubility and syntrophic interactions that enhance microbial stability. When combined, biochar and CO₂ (R2) achieved a significant synergistic effect, increasing specific methane production (SMP) by 42.56% compared to the control (R0). Independent additions of biochar (R1) and CO₂ (R3) also improved SMP, with increases of 35.50% and 28.01%, respectively. This enhancement is likely due to the elevated activity of homoacetogenic bacteria and hydrogenotrophic methanogens, with increased acsB gene expression 2.4-fold with biochar + CO₂ and 1.5-fold with CO₂ alone compared to the control. Additionally, biochar facilitated syntrophic metabolism mediated by Cytochrome-C, promoting electron transfer. The study also demonstrated that biochar and CO2 could enhance enzyme activity, including acetyl-CoA synthase, mhpF, and mhpE. Such improvements bolster AcoD efficiency and promote resource recycling within the circular economy framework.
Collapse
Affiliation(s)
- Cristhian Chicaiza-Ortiz
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China; Biomass to Resources Group, Universidad Regional Amazónica IKIAM, Tena, Napo, 150150, Ecuador.
| | - Pengshuai Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore.
| | - Tengyu Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Qing Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Chen L, Zhang P, Li Y, Liang J, Zhang G. Genome-centric metagenomic analysis reveals mechanisms of quorum sensing promoting anaerobic digestion under sulfide stress: Syntrophic metabolism and microbial self-adaptation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176240. [PMID: 39293760 DOI: 10.1016/j.scitotenv.2024.176240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Sulfide stress is a common inhibition factor in anaerobic digestion systems with sulfur-rich feedstocks. Quorum sensing (QS) signaling molecule N-acyl-homoserine lactones (AHLs) possess positive effect on promoting anaerobic digestion. However, the micro-biological mechanisms of AHLs affecting syntrophic metabolism and microbial self-adaptation have not yet been deciphered in anaerobic digestion under sulfide stress. In this study, the CH4 production increased by 21.34 % at 20 μM AHLs addition in anaerobic digestion under sulfide stress. AHLs contributed to establishing potential syntrophic relationship between acidifying bacteria (unclassified_o__Bacteroidales, Lentimicrobium, Acetoanaerobium, Longilinea, and Sphaerochaetaa) and Methanothrix. AHLs promoted syntrophic metabolism by boosting microbial metabolic activity and interspecies electron transfer (IET) process under sulfide stress. For microbial metabolic activity, AHLs promoted the key enzyme synthesis in acidogenesis and methanogenesis. For IET process, AHLs promoted the assembly and synthesis of conductive pili, and synthesis and secretion of riboflavin. Furthermore, AHLs promoted microbial self-adaptation including two component system, lipopolysaccharide biosynthesis, and DNA repair, which were important evidences that microbial resistance to sulfide stress was enhanced by AHLs. Microbial self-adaptation provided favorable foundation and safeguard for syntrophic metabolisms under sulfide stress. These findings deciphered the micro-biological mechanisms of AHLs enhancing anaerobic digestion under sulfide stress.
Collapse
Affiliation(s)
- Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Ying Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | - Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
6
|
Yu M, Shao H, Wang P, Ren L. Metagenomic analysis reveals the mechanisms of biochar supported nano zero-valent iron in two-phase anaerobic digestion of food waste: microbial community, CAZmey, functional genes and antibiotic resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121763. [PMID: 38972194 DOI: 10.1016/j.jenvman.2024.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The mechanisms of biochar supported nano zero-valent iron (BC/nZVI) on two-phase anaerobic digestion of food waste were investigated. Results indicated that the performance of both acidogenic phase and methanogenic phase was effectively facilitated. BC/nZVI with the amount of 120 mg/L increased methane production by 32.21%. In addition, BC/nZVI facilitated direct interspecies electron transfer (DIET) between Geobacter and methanogens. Further analysis showed that BC/nZVI increased the abundance of most CAZymes in acidogenic phase. The study also found that BC/nZVI had positive effects on metabolic pathways and related functional genes. The abundances of acdA and ackA in acidogenic phase were increased by 151.75% and 36.26%, respectively, and the abundances of pilA and TorZ associated with DIET were also increased. Furthermore, BC/nZVI mainly removed IMP-12, CAU-1, cmeB, ErmR, MexW, ErmG, Bla2, vgaD, MuxA, and cpxA from this system, and reduced the antibiotic resistance genes for antibiotic inactivation resistance mechanisms.
Collapse
Affiliation(s)
- Miao Yu
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Hailin Shao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Pan Wang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lianhai Ren
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
7
|
Qiu Y, Zhang J, Tong YW, He Y. Reverse electron transfer: Novel anaerobic methanogenesis pathway regulated through exogenous CO 2 synergized with biochar. BIORESOURCE TECHNOLOGY 2024; 401:130741. [PMID: 38670292 DOI: 10.1016/j.biortech.2024.130741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
Acid accumulation and carbon emission are two major challenges in anaerobic digestion. Syntrophic consortia can employ reverse electron transfer (RET) to facilitate thermodynamically unfavorable redox reactions during acetogenesis. However, the potential mechanisms and regulatory methods of RET remain unclear. This study examines the regulatory mechanisms by which exogenous CO2 affects RET and demonstrates that biochar maximizes CO2 solubility at 25.8 mmol/L to enhance effects further. CO2 synergized with biochar significantly increases cumulative methane production and propionate degradation rate. From the bioenergetic perspective, CO2 decreases energy level to a maximum of -87 kJ/mol, strengthening the thermodynamic viability. The underlying mechanism can be attributed to RET promotion, as indicated by increased formate dehydrogenase and enrichment of H2/formate-producing bacteria with their partner Methanospirillum hungatei. Moreover, the 5 % 13CH4 and methane contribution result show that CO2 accomplishes directed methanogenesis. Overall, this investigation riches the roles of CO2 and biochar in AD surrounding RET.
Collapse
Affiliation(s)
- Yang Qiu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore.
| | - Yen Wah Tong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Liu QH, Sun HY, Yang ZM. Role of KOH-activated biochar on promoting anaerobic digestion of biomass from Pennisetumgianteum. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120165. [PMID: 38278119 DOI: 10.1016/j.jenvman.2024.120165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/30/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Pennisetum giganteum is a promising non-food crop feedstock for biogas production due to its high productivity and bio-methane potential. However, the accumulation of volatile fatty acids (VFA) usually restricts the conversion efficiency of P. giganteum biomass (PGB) during anaerobic digestion (AD). Here, the role of KOH-activated biochar (KB) in improving the AD efficiency of PGB and the related mechanisms were investigated in detail. The results revealed that KB exhibited excellent electrical conductivity, electron transfer capacity and specific capacitance, which might be related to the decrease in the electron transfer resistance after adding KB to the AD process. In addition, the KB addition not only reinforced metabolisms of energy and VFAs but also promoted the conversion of VFAs to methane, leading to a 52% increase in the methane production rate. Bioinformatics analysis showed that Smithella and Methanosaeta were key players in the KB-mediated AD process of PGB. The stimulatory effect of methanogenesis probably resulted from the establishment of direct interspecies electron transfer (DIET) between VFA-oxidizing acetogens (e.g., Smithella) and Methanosaeta. These findings provided a key step to improve the PGB-based AD process.
Collapse
Affiliation(s)
- Qing-Hua Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong-Ying Sun
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Man Yang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Science, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
9
|
Zhao W, Hu T, Ma H, Li D, Zhao Q, Jiang J, Wei L. A review of microbial responses to biochar addition in anaerobic digestion system: Community, cellular and genetic level findings. BIORESOURCE TECHNOLOGY 2024; 391:129929. [PMID: 37923231 DOI: 10.1016/j.biortech.2023.129929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The biochar is a well-developed porous material with various excellent properties, that has been proven with excellent ability in anaerobic digestion (AD) efficiency promotion. Current research is usually focused on the macro effects of biochar on AD, while the systematic review about the mechanisms of biochar on microbial behavior are still lacking. This review summarizes the effects and potential mechanisms of biochar on microorganisms in AD systems, and found that biochar addition can provide habitats for microbial colonization, alleviate toxins stress, supply essential nutrients, and accelerate interspecies electron transferring. Moreover, it also improves microbial community diversity, facilitates EPS secretion, enhances functional enzyme activity, promotes functional genes expression, and inhibits the antibiotic resistance genes transformation. Future research directions including biochar targeted design, in-depth microbial mechanisms revelation, and modified model development were suggested, which could promote the widely practical application of of biochar-amended AD technology.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Nie W, He S, Lin Y, Cheng JJ, Yang C. Functional biochar in enhanced anaerobic digestion: Synthesis, performances, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167681. [PMID: 37839485 DOI: 10.1016/j.scitotenv.2023.167681] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Anaerobic digestion technology is crucial in bioenergy recovery and organic waste management. At the same time, it often encounters challenges such as low organic digestibility and inhibition of toxic substances, resulting in low biomethane yields. Biochar has recently been used in anaerobic digestion to alleviate toxicity inhibition, improve the stability of anaerobic digestion processes, and increase methane yields. However, the practical application of biochar is limited, for the properties of pristine biochar significantly affect its application in anaerobic digestion. Although much research focuses on understanding original biochar's fundamental properties and functionalization, there are few reviews on the applications of functional biochar and the effects of critical properties of pristine biochar on anaerobic digestion. This review systematically reviewed functionalization strategies, key performances, and applications of functional biochar in anaerobic digestion. The properties determining the role of biochar were reviewed, the synthesis methods of functional biochar were summarized and compared, the mechanism of functional biochar was discussed, and the factors affecting the function of functional biochar were reviewed. This review provided a comprehensive understanding of functional biochar in anaerobic digestion processes, which would be helpful for the development and applications of engineered biochar.
Collapse
Affiliation(s)
- Wenkai Nie
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jay J Cheng
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
11
|
Zhong Y, He J, Duan S, Cai Q, Pan X, Zou X, Zhang P, Zhang J. Revealing the mechanism of novel nitrogen-doped biochar supported magnetite (NBM) enhancing anaerobic digestion of waste-activated sludge by sludge characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117982. [PMID: 37119625 DOI: 10.1016/j.jenvman.2023.117982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Anaerobic digestion (AD) is a promising technology in waste treatment and energy recovery. However, it suffers from long retention time and low biogas yield. In this study, novel nitrogen-doped biochar supported magnetite (NBM) was synthesized and applied to enhance the AD of waste-activated sludge. Results showed that NBM increased cumulative methane production and SCOD removal efficiency by up to 1.75 times and 15% respectively at 5 g/L compared with the blank. NBM enhanced both hydrolysis and methanogenesis process during AD and the activities of α-glucosidase, protease, coenzyme F420 and electron transport system were increased by 19%, 163%, 104% and 160% respectively at 5 g/L NBM compared with the blank. NBM also facilitated the secretion of conductive protein in extracellular polymeric substances as well as the formation of conductive pili, leading to 3.18-7.59 times higher sludge electrical conductivity. Microbial community analysis revealed that bacteria Clostridia and archaea Methanosarcina and Methanosaeta were enriched by the addition of NBM, and direct interspecies electron transfer might be promoted between them. This study provides a practical reference for future material synthesis and its application.
Collapse
Affiliation(s)
- Yijie Zhong
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Shengye Duan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Qiupeng Cai
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xinlei Pan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiang Zou
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Pengfei Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jie Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|