1
|
Wang Y, Zhang X, Chen Y. The enhancement of caproic acid synthesis from organic solid wastes: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123215. [PMID: 39504670 DOI: 10.1016/j.jenvman.2024.123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Organic solid waste (OSW) significantly harms the environment and threatens human health. Producing caproic acid (CA) from OSW presents a cost-effective, sustainable, and resource-efficient solution. This study comprehensively examines the various methods for synthesizing CA from OSW, focusing on waste material selection, pretreatment processes to improve dissolution and hydrolysis of OSW, key substrates, and optimization strategies. Using OSW resources has been extensively studied and applied across numerous industries, presenting a promising solution for reducing environmental pollution. This study provides insights into CA synthesis pathways and substrate selection while emphasizing the optimization of CA production from OSW. It also highlights key areas for future research.
Collapse
Affiliation(s)
- Yidan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
2
|
Liang M, Chen J, Dong Y, Guo G, Wu X, Zan F. Feasibility assessment and underlying mechanisms of metabisulfite pretreatment for enhanced volatile fatty acids production from anaerobic sludge fermentation. WATER RESEARCH 2024; 265:122286. [PMID: 39190952 DOI: 10.1016/j.watres.2024.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Employing chemical pretreatment for waste activated sludge (WAS) fermentation is crucial to achieving sustainable sludge management. This study investigated the feasibility of metabisulfite (MS) pretreatment for enhancing volatile fatty acids (VFAs) production from WAS. The results show that after 24-h MS pretreatment, the content of soluble organic matter and loosely bound extracellular polymeric substances (LB-EPS), especially proteins, increased significantly. During the fermentation, MS pretreatment under alkaline conditions was more efficient, with VFA peaking on the fifth day, showing a 140 % increase compared to the alkaline control group. Correlation analysis suggests that the dosage of MS, rather than pH, is closely related to the levels of soluble protein, polysaccharides, LB-EPS, and subsequential VFAs production, while alkaline conditions facilitate the dissolution of total organic carbon. Furthermore, sulfite radicals (SO3•-) are attributed to cell inactivation and lysis, while alkaline conditions initially reduce the size of the flocs, further promoting MS for attacking flocs, thereby improving the performance of fermentation. The study also found that MS pretreatment reduced microbial community diversity, enriched hydrolytic and fermentation bacteria (Actinobacteriota and Firmicutes), and suppressed methanogens (Methanobacteriaceae and Methanosaetaceae), making it a safe, viable, and cost-effective chemical agent for sustainable sludge management.
Collapse
Affiliation(s)
- Muxiang Liang
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Chen
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yongrui Dong
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gang Guo
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
3
|
Hou T, Zhou Y, Du R, Liu J, Li W, Zhang S, Li M, Chu J, Meng L. Insights into effects of thermotolerant nitrifying and sulfur-oxidizing inoculants on nitrogen-sulfur co-metabolism in sewage sludge composting. J Environ Sci (China) 2024; 144:76-86. [PMID: 38802240 DOI: 10.1016/j.jes.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 05/29/2024]
Abstract
In this study, high temperature thermotolerant nitrifying bacteria (TNB) and high temperature thermotolerant sulfide oxidizing bacteria (TSOB) were obtained from compost samples and inoculated into sewage sludge (SS) compost. The effects of inoculation on physical and chemical parameters, ammonia and hydrogen sulfide release, nitrogen form and sulfur compound content change and physical-chemical properties during nitrogen and sulfur conversion were studied. The results showed that inoculation of TNB and TSOB increased the temperature, pH, OM degradation, C/N ratio and germination index (GI) of compost. Compared with the control treatment (CK), the addition of inoculants reduced the release of NH3 and H2S, and transformed them into nitrogen and sulfur compounds, the hydrolysis of polymeric ferrous sulfate was promoted, resulting in relatively high content of sulfite and sulfate. At the same time, the physical and chemical properties of SS have a strong correlation with nitrogen and sulfur compounds.
Collapse
Affiliation(s)
- Tingting Hou
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Yujie Zhou
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rongchun Du
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Jiali Liu
- Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Muzi Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junhong Chu
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China.
| |
Collapse
|
4
|
Cheng B, Zhang D, Lin Q, Zhou L, Jiang J, Bi X, Jiang W, Zan F, Wang Z, Chen G, Guo G. Thiosulfate/FeCl 3 pre-treatment enhances short-chain fatty acid production and mitigates H 2S generation during anaerobic fermentation of waste activated sludge: Performance, microbial community and ecological analyses. BIORESOURCE TECHNOLOGY 2024; 398:130548. [PMID: 38458263 DOI: 10.1016/j.biortech.2024.130548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Anaerobic fermentation (AF) has been identified as a promising method of transforming waste activated sludge (WAS) into high-value products (e.g., short-chain fatty acids (SCFAs)). This study developed thiosulfate/FeCl3 pre-treatment and investigated the effects of different thiosulfate/FeCl3 ratios (S:Fe = 3:1, 3:2, 1:1, 3:4 and 3:5) on SCFA production and sulfur transformation during the AF of WAS. At a S:Fe ratio of 1:1, the maximal SCFA yield (933.3 mg COD/L) and efficient H2S removal (96.5 %) were obtained. S:Fe ratios ≤ 1:1 not only benefited hydrolysis and acidification but largely mitigated H2S generation. These results were supported by the enriched acidogens and reduced sulfur-reducing bacteria (SRB). Molecular ecological network analysis further revealed that the keystone taxon (g_Saccharimonadales) was found in S:Fe = 1:1, together with reductions in associations among methanogens, acidogens and SRB. This work provides a strategy for enhancing high-value product recovery from WAS and minimising H2S emissions.
Collapse
Affiliation(s)
- Boyi Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China
| | - Da Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China
| | - Qingshan Lin
- College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Yongchuan 402160, China
| | - Lichang Zhou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China
| | - Jinqi Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China
| | - Xinqi Bi
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China
| | - Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China
| | - Guanghao Chen
- Department of Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China.
| |
Collapse
|
5
|
Qin S, Zhang D, Wang J, Liang M, Chen W, Zhang T, Lu X, Li L, Wu X, Zan F. In-situ sulfite treatment promotes solid reduction during aerobic digestion of waste activated sludge: Feasibility for small-scale wastewater treatment plants. BIORESOURCE TECHNOLOGY 2024; 394:130224. [PMID: 38122993 DOI: 10.1016/j.biortech.2023.130224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Aerobic digestion remains the preferred choice for small-scale wastewater treatment plants (WWTPs) in some developing countries, largely due to economic viability and operational simplicity. The escalating production of waste activated sludge (WAS) has prompted small-scale WWTPs to improve efficiency. To address this issue, this study employed an in-situ sulfite treatment as a non-intrusive method to augment aerobic digestion. With sulfite-enhanced solubilization and hydrolysis, a 3.6-fold increase in degradation was achieved. Both sludge dewatering properties and pathogens inactivation were improved. Microbial community analysis revealed a preferential enrichment of Actinobacteriota and Firmicutes during sulfite treatment. The desktop scaling-up estimation suggests that implementing this treatment yielded operational cost savings exceeding 40 %. In summary, in-situ sulfite treatment offers a cost-effective strategy for WAS management in small-scale WWTPs.
Collapse
Affiliation(s)
- Shichan Qin
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dandan Zhang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China; School of Urban Construction, Department of Water and Wastewater Engineering and Hubei Experimental Teaching Demonstration Center, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jiale Wang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muxiang Liang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Chen
- School of Urban Construction, Department of Water and Wastewater Engineering and Hubei Experimental Teaching Demonstration Center, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Tiantian Zhang
- Changjiang Eco-environmental Protection Group Co., Ltd, Wuhan, China
| | - Xiejuan Lu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liangbin Li
- Changjiang Eco-environmental Protection Group Co., Ltd, Wuhan, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
6
|
Ma S, Xu K, Ren H. Effect of mixing intensity on volatile fatty acids production in sludge alkaline fermentation: Insights from dissolved organic matter characteristics and functional microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118801. [PMID: 37591099 DOI: 10.1016/j.jenvman.2023.118801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Alkaline fermentation for volatile fatty acids (VFAs) production has shown potential as a viable approach to treat sewage sludge. The hydrolysis and acidogenesis of sludge are greatly influenced by mixing. However, the effects of mixing intensity on VFAs production in sludge alkaline fermentation (SAF) remain poorly understood. This study investigated the impacts of mixing intensity (30, 90 and 150 rpm continuous mixing, and 150 rpm intermittent mixing) on VFAs production, dissolved organic matter (DOM) characteristics, phospholipid fatty acid profiles and microbial population distribution in SAF. Results showed that 150 rpm continuous and intermittent mixing enhanced the hydrolysis of sludge, while 150 rpm intermittent mixing resulted in the highest VFAs production (3886 ± 266.1 mg COD/L). Analysis of fluorescent and molecular characteristics of DOM revealed that 150 rpm intermittent mixing facilitated the conversion of released DOM, especially proteins-like substances, into VFAs. The abundance of unsaturated and branched fatty acids of microbes increased under 150 rpm intermittent mixing, which could aid in DOM degradation and VFAs production. Firmicutes and Tissierella were enriched at 150 rpm intermittent mixing, which favored the maximum VFAs yield. Moreover, Firmicutes were found to be the key functional microorganisms influencing the yield of VFAs during SAF. This study provides an understanding about the mixing intensity effects on VFAs production during SAF, which could be helpful to improve the yield of VFAs.
Collapse
Affiliation(s)
- Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| |
Collapse
|
7
|
Li X, Liu H, Zhang Z, Zhou T, Wang Q. Sulfite pretreatment enhances the medium-chain fatty acids production from waste activated sludge anaerobic fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162080. [PMID: 36754319 DOI: 10.1016/j.scitotenv.2023.162080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Production of high-value medium chain fatty acids (MCFAs) from anaerobic fermentation of waste activated sludge (WAS) has been considered as a promising alternative for renewable energy resources. However, the low biodegradability of WAS greatly limits the anaerobic fermentation performance. This study proposed and demonstrated a novel approach, sulfite pretreatment, to efficiently produce MCFAs through anaerobic fermentation of WAS. Pretreatment of WAS at a sulfite concentration of 100-500 mg S/L for 24 h effectively improved the MCFAs production and MCFAs selectivity and the promotion effect was positively correlated with the sulfite concentration used in pretreatment (Pearson's R > 0.9). The maximum MCFAs production of 6.84 g COD/L and MCFAs selectivity of 39.1 % were both achieved under 500 mg S/L sulfite pretreatment, which accounts for 2.6 times and 2.4 times of the control, respectively (MCFAs production of 2.62 g COD/L and MCFAs selectivity of 16.4 % in the control). Sulfite pretreatment also enhanced the WAS degradation from 25 ± 2 % in the control to a maximum of 39 ± 2 % under 500 mg S/L sulfite pretreatment. The electron transfer efficiency and COD flows from the substrate to products were enhanced by up to 25 % due to the sulfite pretreatment, which supports the enhanced WAS degradation. Sulfite pretreatment also promoted the solubilization, hydrolysis, and acidification processes during the anaerobic fermentation by up to 200 %, 60 %, and 45 %, respectively, which subsequently makes more substrates available for MCFAs production. The findings from this study provide a potential solution of using industrial sulfite-laden wastes for WAS pretreatment, to enhance the MCFAs production at a minimized cost.
Collapse
Affiliation(s)
- Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Zehao Zhang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|