1
|
Liu M, Xu L, Yin Z, He D, Zhang Y, Liu C. Harnessing the potential of exogenous microbial agents: a comprehensive review on enhancing lignocellulose degradation in agricultural waste composting. Arch Microbiol 2025; 207:51. [PMID: 39893606 DOI: 10.1007/s00203-025-04247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Composting converts organic agricultural wastes into value-added products, yet the presence of significant non-biodegradable lignocelluloses hinders its efficiency. The introduction of various exogenous microbial agents has been shown to effectively addresses this challenge. In this context, basing on the microbial enzymatic mechanism for lignocellulose degradation, this paper synthesizes the latest research advancements and practical applications of exogenous microbial agents in agricultural waste composting. Given that the effectiveness of lignocellulose degradation is highly dependent on the waste's inherent characteristics, it is crucial to carefully consider the composition of fungi and bacteria, the dosage of microbial agents, and the composting process operation, tailored to the specific type of agricultural waste. Moreover, the combination of additives with exogenous microbial agents can further enhance the degradation of lignocelluloses and the humification of organic matters. Furthermore, insights into the future research and application trends of exogenous microbial agents in agricultural waste composting was prospected.
Collapse
Affiliation(s)
- Meng Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Luxin Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Zhixuan Yin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China.
| | - Deming He
- Shanghai Chengtou Shangjing Ecological Restoration Technology Co., Shanghai, 200120, People's Republic of China
| | - Yujia Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| |
Collapse
|
2
|
Liu B, Jia P, Zou J, Ren H, Xi M, Jiang Z. Improving soil properties and Sesbania growth through combined organic amendment strategies in a coastal saline-alkali soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124041. [PMID: 39778349 DOI: 10.1016/j.jenvman.2025.124041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Improving the quality of degraded coastal saline-alkali soil and promoting plant growth are key challenges in the restoration of ecological functions in coastal regions. Organic ameliorants such as effective microbial (EM) agent, biochar, and organic compost have been proposed as sustainable solutions, but limited research has explored the combined effects of these amendments. This study investigates five organic improvement strategies: individual applications of EM, corn straw biochar (CSB), and sewage sludge-reed straw compost (COM), along with combined treatments of CSB + EM and COM + EM, on Sesbania growth in a pot experiment. The results demonstrated that, compared to the separate applications, the combined strategies (CSB + EM and COM + EM) exhibited a greater improvement in Sesbania growth; for instance, the plant dry weight was 4.61-12.1 times that of the control. The improved plant growth was linked to enhanced nutrient uptake and changes in soil properties. The combined strategies, particularly COM + EM, resulted in greater decreases in soil pH (decreased by 2.79%-3.49% compared to the control) and better improvements in soil nutrient content, quantity and quality of dissolved organic matter, microbial community diversity, and the abundance of plant growth-promoting rhizobacteria (PGPR), e.g., Bacillus. Spearman correlation and structural equation modeling confirmed that these soil improvements directly contributed to enhanced plant nutrient uptake. Overall, these findings suggest that combined strategies of COM + EM and CSB + EM, particularly the former, are highly effective for the remediation of coastal saline-alkali soils, offering a promising approach for improving soil fertility and plant productivity in degraded coastal ecosystems.
Collapse
Affiliation(s)
- Bin Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Peiyin Jia
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Jiasheng Zou
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Haixi Ren
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Min Xi
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Zhixiang Jiang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| |
Collapse
|
3
|
Cao L, Wang L, Qi Y, Yang S, Gao J, Liu Q, Song L, Hu R, Wang Z, Zhang H. Enhanced effect of ferrous sulfate on nitrogen retention and PBAT degradation during co-composting by combing with biochar-loaded FN1 bacterial composites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123749. [PMID: 39709662 DOI: 10.1016/j.jenvman.2024.123749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
The treatment of biodegradable plastics through composting has garnered increasing attention. This study aimed to investigate the effects of Biochar FN1 bacteria and ferrous sulfate on nitrogen retention, greenhouse gas emissions, and degradable plastics during composting and to elucidate their synergistic mechanisms on microbial communities. Compared with the control, applying biochar-loaded FN1 bacteria composites combined with Ferrous sulfate (SGC) markedly accelerated organic matter degradation and reduced cumulative CO2 and NH3 emissions. The synergistic interaction between the composites and Ferrous sulfate significantly enhanced NH4+-N levels in the thermophilic phase and NO3--N levels in the cooling phase, ultimately decreasing nitrogen loss by 14.9% (P < 0.05) and increasing the seed germination index (GI) by 22.5% (P < 0.05). Additionally, PBAT plastic degradation was improved by 31.6% (P < 0.05). The SGC treatment also altered the richness and diversity of the bacterial community in both the compost and the PBAT plastic sphere, particularly affecting Sphingobacterium, Pseudomonas, and Flavobacterium at the genus level. Symbiotic network analysis and Redundancy Analysis revealed that these functional degradation bacteria were significantly positively correlated with NO3--N levels and PBAT degradation. Furthermore, structural equation modelling indicated a positive relationship between PBAT degradation rate and composting temperature (r = 0.69, p < 0.05). The findings suggested that Fe2+ not only enhanced the FN1 activity but also promoted PBAT degradation by increasing ·OH content on the PBAT plastic sphere. Overall, the combined use of biochar-loaded FN1 bacteria and Ferrous sulfate effectively supports nitrogen retention and plastic degradation during composting.
Collapse
Affiliation(s)
- Long Cao
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest MinZu University, Lanzhou, 730000, China; Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China
| | - Linshan Wang
- Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China
| | - Yanjiao Qi
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest MinZu University, Lanzhou, 730000, China; Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China.
| | - Shen Yang
- Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China
| | - Jiazhi Gao
- Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China
| | - Qiang Liu
- Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China
| | - Lisha Song
- Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China
| | - Run Hu
- Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China
| | - Zifan Wang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest MinZu University, Lanzhou, 730000, China
| | - Hong Zhang
- Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China; Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Cao J, Zhou H, Wang X, Wang Y, Li Y, Joseph S, Wang X, Sun M, Zhang K, Lin Y, Xu G, Ni K, Shang J, Yang F. Game changer for anaerobic fermentation of paper mulberry: Sucrose-loaded biochar enhancing microbial communities and lactic acid fermentation. BIORESOURCE TECHNOLOGY 2024; 414:131552. [PMID: 39374834 DOI: 10.1016/j.biortech.2024.131552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
This study investigated biochar effects, either alone or combined with sucrose, on fermentation quality, microbial communities, and in vitro rumen digestion of anaerobic fermented paper mulberry. The biochar alkaline functional groups bind to lactic acid, reducing acid inhibition and promoting Lactiplantibacillus proliferation. Owing to the low sugar content of paper mulberry, lactic acid bacteria in the biochar group primarily underwent heterofermentation, resulting in the lowest lactic and highest acetic acid contents. Treated with sucrose-loaded biochar, the increased substrate supported homofermentation, leading to the highest lactic and lowest acetic acid contents, with a 15.0 % increase in lactic acid and a 22.2 % decrease in ammoniacal nitrogen compared with the control after 75 days. In vitro rumen tests showed that the biochar-sucrose group had the highest dry matter degradation rate (45.9 %) and a 24.2 % reduction in methane emissions. Concludingly, sucrose-loaded biochar is recommended as effective for lactic acid production under anaerobic conditions.
Collapse
Affiliation(s)
- Jingwen Cao
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Hongzhang Zhou
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xuekai Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China; College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Yang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Yu Li
- College of Engineering, China Agricultural University, Beijing, China; Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Stephen Joseph
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiaorong Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Mengyao Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Keyi Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Gang Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China; College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Qin X, Huang W, Li Q. Lignocellulose biodegradation to humic substances in cow manure-straw composting: Characterization of dissolved organic matter and microbial community succession. Int J Biol Macromol 2024; 283:137758. [PMID: 39557245 DOI: 10.1016/j.ijbiomac.2024.137758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Composting, a sustainable practice, facilitates the biodegradation of organic waste, notably lignocellulosic biomass, into value-added humic substances. Despite its potential, the application of electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to characterize dissolved organic matter (DOM) for assessing the changes in maturity during cow manure-straw composting is underexplored. Furthermore, the link between these changes, microbial community succession, and the biochemical pathways of humus formation is seldom investigated. This study leveraged ESI FT-ICR MS and metagenomic analysis to elucidate the molecular changes in DOM, identified key microbes in humus formation, and traced the humus formation pathway during composting. The results highlighted the crucial role of microorganisms such as Thermobifida, Luteimonas, Ascomycota, and Chloroflexi in accelerating the breakdown and transformation of plant biopolymers. Large molecular nitrogen compounds from cow manure-straw were converted into unsaturated, aromatic oxygen compounds, which resemble humic substances in their chemical properties. The ESI FT-ICR MS data revealed that humus formation occurred through a series of reactions, including protein deamination, lignin delignification, and decarbonylation. This research offered new light on strategies to enhance the stabilization and humification of cow manure-straw composting, contributing to more effective composting processes.
Collapse
Affiliation(s)
- Xiaoya Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Wenyu Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
6
|
Dong S, Li R, Zhou K, Wei Y, Li J, Cheng M, Chen P, Hu X. Response of humification process to fungal inoculant in corn straw composting with two different kinds of nitrogen sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174461. [PMID: 38964380 DOI: 10.1016/j.scitotenv.2024.174461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Inoculation is widely used in composting to improve the mineralization process, however, the link of fungal inoculant to humification is rarely proposed. The objective of this study was to investigate the effect of compound fungal inoculation on humification process and fungal community dynamics in corn straw composting with two different kinds of nitrogen sources [pig manure (PM) and urea (UR)]. Structural equation modeling and random forest analysis were conducted to identify key fungi and explore the fungi-mediated humification mechanism. Results showed that fungal inoculation increased the content of humic acids in PM and UR by 71.76 % and 53.01 % compared to control, respectively. High-throughput sequencing indicated that there were more key fungal genera for lignin degradation in PM especially in the later stage of composting, but a more complex fungal (genera) connections with lower humification degree was found in UR. Network analysis and random forest suggested that inoculation promoted dominant genus such as Coprinus, affecting lignocellulose degradation. Structural equation modeling indicated that fungal inoculation could promote humification by direct pathway based on lignin degradation and indirect pathway based on stimulating the indigenous microbes such as Scedosporiu and Coprinus for the accumulation of carboxyl and polyphenol hydroxyl groups. In summary, fungal inoculation is suitable to be used combining with complex nitrogen source such as pig manure in straw composting.
Collapse
Affiliation(s)
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Jun Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaomei Hu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Dinh VP, Tran-Vu HA, Tran T, Duong BN, Dang-Thi NM, Phan-Van HL, Tran TK, Huynh VH, Nguyen TPT, Nguyen TQ. Improving Soil Quality and Crop Yields Using Enhancing Sustainable Rice Straw Management Through Microbial Enzyme Treatments. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241283001. [PMID: 39483681 PMCID: PMC11526194 DOI: 10.1177/11786302241283001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/27/2024] [Indexed: 11/03/2024]
Abstract
This study develops a model to raise public awareness about the consequences of burning rice straw after harvest, including environmental pollution, soil degradation, and increased CO2 emissions that contribute to the greenhouse effect. The distinctive feature of the research is the introduction of a post-harvest rice straw treatment process using microbial products capable of secreting cellulase enzymes, which can break down the cellulose in the straw. This process shortens the decomposition time and produces natural organic fertilizer, thus reducing cultivation costs by 60% and increasing crop yields by 20%. The experimental model was carried out in Cam My district, Dong Nai province, Vietnam, including 4 models: no microbial products; using Bio Decomposer; using NTT-01; and using NTT-02. Each experimental field had an area of 650 m². The results showed a significant reduction in straw decomposition time after 14 days of use of the products, with a decomposition rate of up to 80%, nearly twice as fast as without the products. This helps save time, produce natural organic fertilizers, reduce care costs, and increase rice yields, resulting in more income for local residents. These findings demonstrate the effectiveness of microbial treatments in sustainable agriculture and their potential for a broader application in the management of agricultural waste.
Collapse
Affiliation(s)
- Van-Phuc Dinh
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hoai-An Tran-Vu
- Research and Development Institute Advanced Agrobiology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thanh Tran
- Research and Development Institute Advanced Agrobiology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Bich-Ngoc Duong
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Ngoc-Mai Dang-Thi
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hoai-Luan Phan-Van
- Research and Development Institute Advanced Agrobiology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Tuan-Kiet Tran
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
- Research and Development Institute Advanced Agrobiology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Van-Hieu Huynh
- Nguyen Tat Thanh HI-TECH Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thi-Phuong-Tu Nguyen
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thanh Q Nguyen
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Su Y, Zhou S, Tian P, Qi C, Xu Z, Zhang Y, Huh SY, Luo W, Li G, Li Y. Techno-economic assessment of industrial food waste composting facility: Evaluating bulking agents, processing strategies, and market dynamics. BIORESOURCE TECHNOLOGY 2024; 408:131210. [PMID: 39098353 DOI: 10.1016/j.biortech.2024.131210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Techno-economic assessment (TEA) of a valorization of bulking agent (BA) ratios on the food waste compost value chain is made to assess economic feasibility. TEA was performed with two plans (Plan A: existing composting facilities; Plan B: new composting facilities) and each plan was under four scenarios. The BA (i.e. corn stalks, garden waste, and watermelon seedlings) ratio of 5 % (S1), 10 % (S2), 20 % (S3), and garden waste with a ratio of 20 % (S4). Results indicate that S2, with a net present value (NPV) of 128.9 million, represents Plan A's most economically viable scenario. Although the total operating costs of S4 were 18.9 %-23.5 % higher, 25.6 %-42.2 % higher total revenue made S4 have an NPV of 92.9 million, making it the most viable scenario in Plan B. All scenarios show positive NPV within a ± 20 % fluctuation range. Organic fertilizer price, government subsidies, and processing capacity were the key factors influencing NPV.
Collapse
Affiliation(s)
- Yuao Su
- State Key Laboratory of Nutrient Use and Management, Key Laboratory of Lowcarbon Green Agriculture, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; Department of Energy Policy, Seoul National University of Science & Technology, Seoul 01811, Korea
| | - Shenxian Zhou
- State Key Laboratory of Nutrient Use and Management, Key Laboratory of Lowcarbon Green Agriculture, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Peiyu Tian
- State Key Laboratory of Nutrient Use and Management, Key Laboratory of Lowcarbon Green Agriculture, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Chuanren Qi
- State Key Laboratory of Nutrient Use and Management, Key Laboratory of Lowcarbon Green Agriculture, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Zhicheng Xu
- State Key Laboratory of Nutrient Use and Management, Key Laboratory of Lowcarbon Green Agriculture, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Yiran Zhang
- State Key Laboratory of Nutrient Use and Management, Key Laboratory of Lowcarbon Green Agriculture, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Sung-Yoon Huh
- Department of Energy Policy, Seoul National University of Science & Technology, Seoul 01811, Korea
| | - Wenhai Luo
- State Key Laboratory of Nutrient Use and Management, Key Laboratory of Lowcarbon Green Agriculture, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- State Key Laboratory of Nutrient Use and Management, Key Laboratory of Lowcarbon Green Agriculture, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Yangyang Li
- State Key Laboratory of Nutrient Use and Management, Key Laboratory of Lowcarbon Green Agriculture, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Che S, Xu Y, Qin X, Tian S, Wang J, Zhou X, Cao Z, Wang D, Wu M, Wu Z, Yang M, Wu L, Yang X. Building microbial consortia to enhance straw degradation, phosphorus solubilization, and soil fertility for rice growth. Microb Cell Fact 2024; 23:232. [PMID: 39169403 PMCID: PMC11337586 DOI: 10.1186/s12934-024-02503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Straw pollution and the increasing scarcity of phosphorus resources in many regions of China have had severe impacts on the growing conditions for crop plants. Using microbial methods to enhance straw decomposition rate and phosphorus utilization offers effective solutions to address these problems. In this study, a microbial consortium 6 + 1 (consisting of a straw-degrading bacterium and a phosphate-solubilizing bacterium) was formulated based on their performance in straw degradation and phosphorus solubilization. The degradation rate of straw by 6 + 1 microbial consortium reached 48.3% within 7 days (The degradation ability was 7% higher than that of single bacteria), and the phosphorus dissolution rate of insoluble phosphorus reached 117.54 mg·L- 1 (The phosphorus solubilization ability was 29.81% higher than that of single bacteria). In addition, the activity of lignocellulosic degrading enzyme system was significantly increased, the activities of endoglucanase, β-glucosidase and xylanase in the microbial consortium were significantly higher than those in the single strain (23.16%, 28.02% and 28.86%, respectively). Then the microbial consortium was processed into microbial agents and tested in rice pots. The results showed that the microbial agent significantly increased the content of organic matter, available phosphorus and available nitrogen in the soil. Ongoing research focuses on the determination of the effects and mechanisms of a functional hybrid system of straw degradation and phosphorus removal. The characteristics of the two strains are as follows: Straw-degrading bacteria can efficiently degrade straw to produce glucose-based carbon sources when only straw is used as a carbon source. Phosphate-solubilizing bacteria can efficiently use glucose as a carbon source, produce organic acids to dissolve insoluble phosphorus and consume glucose at an extremely fast rate. The analysis suggests that the microbial consortium 6 + 1 outperformed individual strains in terms of both performance and application effects. The two strains within the microbial consortium promote each other during their growth processes, resulting in a significantly higher rate of carbon source consumption compared to the individual strains in isolation. This increased demand for carbon sources within the growth system facilitates the degradation of straw by the strains. At the same time, the substantial carbon consumption during the metabolic process generated a large number of organic acids, leading to the solubilization of insoluble phosphorus. It also provides a basis for the construction of this type of microbial consortium.
Collapse
Affiliation(s)
- Songhao Che
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yufeng Xu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Xueting Qin
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Shiqi Tian
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Jianing Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Xueying Zhou
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Zhenning Cao
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Dongchao Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Meikang Wu
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Zhihai Wu
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Meiying Yang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Lei Wu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Xue Yang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
10
|
Zhang S, Wang L, Zhou B, Zhang D, Tang G, Guo L. Characteristics of humification, functional enzymes and bacterial community metabolism during manganese dioxide-added composting of municipal sludge. ENVIRONMENTAL RESEARCH 2024; 252:119151. [PMID: 38754608 DOI: 10.1016/j.envres.2024.119151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
The aim of this study was to assess effects of MnO2 addition (CK-0%, T1-2% and T2-5%) on humification and bacterial community during municipal sludge (MS) composting. The results suggested that MnO2 addition inhibited the growth of Nitrospira but stimulated Nonomuraea, Actinomadura, Streptomyces and Thermopolyspora, facilitating the lignocellulose degradation and humification with the increase in organic matter degradation by 13.8%-19.2% and humic acid content by 10.9%-20.6%. Compared to CK, the abundances of exoglucanase (EC:3.2.1.91), endo-1,4-beta-xylanase (EC:3.2.1.136) and endomannanase (EC:3.2.1.78) increased by 88-99, 52-66 and 4-15 folds, respectively. However, 5%-MnO2 induced the enrichment of Mizugakiibacter that harms the environment of agricultural production. The addition of 2%-MnO2 was recommended for MS composting. Furthermore, metabolic function analysis indicated that MnO2 addition altered amino acid and carbohydrate metabolism, especially enhancing propanoate metabolism and butanoate metabolism but inhibiting citrate cycle. Structural equation modeling revealed that Nonomuraea and Actinomadura were the main drivers for lignocellulose degradation. This study provided theoretical guidance in regulating humification via MnO2 for MS composting.
Collapse
Affiliation(s)
- Shihua Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China.
| | - Liujian Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
| | - Bingjie Zhou
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
| | - Dewei Zhang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Gang Tang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
| | - Lina Guo
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
| |
Collapse
|
11
|
Zhang S, Song C, Wang L, Wang M, Zhang D, Tang G. Exploring the promoting effect of nitrilotriacetic acid on hydroxyl radical and humification during magnetite-amended composting of sewage sludge. BIORESOURCE TECHNOLOGY 2024; 403:130863. [PMID: 38772520 DOI: 10.1016/j.biortech.2024.130863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
The OH production by adding magnetite (MGT) alone has been reported in composting. However, the potential of nitrilotriacetic acid (NTA) addition for magnetite-amended sludge composting remained unclear. Three treatments with different addition [control check (CK); T1: 5 % MGT; T2: 5 % MGT + 5 % NTA] were investigated to characterize hydroxyl radical, humification and bacterial community response. The NTA addition manifested the best performance, with the peak OH content increase by 52 % through facilitating the cycle of Fe(Ⅱ)/Fe(Ⅲ). It led to the highest organic matters degradation (22.3 %) and humic acids content (36.1 g/kg). Furthermore, NTA addition altered bacterial community response, promoting relative abundances of iron-redox related genera, and amino acid metabolism but decreasing carbohydrate metabolism. Structural equation model indicated that temperature and Streptomyces were the primary factors affecting OH content. The study suggests that utilizing chelators is a promising strategy to strengthen humification in sewage sludge composting with adding iron-containing minerals.
Collapse
Affiliation(s)
- Shihua Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China.
| | - Chunqing Song
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Liujian Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Mingming Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Dewei Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Gang Tang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| |
Collapse
|
12
|
Su N, Wang K, Zhang Z, Yao L, Chen Z, Han H. Urease-producing bacteria combined with pig manure biochar immobilize Cd and inhibit the absorption of Cd in lettuce (Lactuca sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45537-45552. [PMID: 38967850 DOI: 10.1007/s11356-024-34241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The synergistic remediation of heavy metal-contaminated soil by functional strains and biochar has been widely studied. However, the mechanisms by which urease-producing bacteria combine with pig manure biochar (PMB) to immobilize Cd and inhibit Cd absorption in vegetables are still unclear. In our study, the effects and mechanisms of PMB combined with the urease-producing bacterium TJ6 (TJ6 + PMB) on Cd adsorption were explored. The effects of TJ6 + PMB on the Cd content and pH of the leachate were also studied through a 56-day soil leaching experiment. Moreover, the effects of the complexes on Cd absorption and microbial mechanisms in lettuce were explored through pot experiments. The results showed that PMB provided strain TJ6 with a greater ability to adsorb Cd, inducing the generation of CdS and CdCO3, and thereby reducing the Cd content (71.1%) and increasing the pH and urease activity in the culture medium. TJ6 + PMB improved lettuce dry weight and reduced Cd absorption. These positive effects were likely due to (1) TJ6 + PMB increased the organic matter and NH4+ contents, (2) TJ6 + PMB transformed available Cd into residual Cd and decreased the Cd content in the leachate, and (3) TJ6 + PMB altered the structure of the rhizosphere bacterial and fungal communities in lettuce, increasing the relative abundances of Stachybotrys, Agrocybe, Gaiellales, and Gemmatimonas. These genera can promote plant growth, decompose organic matter, and release phosphorus. Interestingly, the fungal communities were more sensitive to the addition of TJ6 and PMB, which play important roles in the decomposition of organic matter and immobilization of Cd. In conclusion, this study revealed the mechanism by which urease-producing bacteria combined with pig manure biochar immobilize Cd and provided a theoretical basis for safe pig manure return to Cd-polluted farmland. This study also provides technical approaches and bacterial resources for the remediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Nannan Su
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Ke Wang
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Zhengtian Zhang
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Lunguang Yao
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Zhaojin Chen
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Hui Han
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China.
| |
Collapse
|
13
|
Mu L, Dong R, Wang J, Yue J, Pan L, Song C, Wei Z. The positive effect of the enzyme inducer (MnSO 4) on the formation of humic substance in rice straw composting by stimulating key microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171460. [PMID: 38442764 DOI: 10.1016/j.scitotenv.2024.171460] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
This study investigated the impact of adding enzyme inducer (MnSO4) on humic substance (HS) formation during straw composting. The results demonstrated that both enzyme inducer treatment group (Mn) and functional microorganism treatment group (F) led to an increase in the content of HS compared to the treatment group without enzyme inducer and functional microorganism (CK). Interestingly, the enzyme inducer exhibited a higher promoting effect on HS (57.80 % ~ 58.58 %) than functional microbial (46.54 %). This was because enzyme inducer stimulated the growth of key microorganisms and changed the interaction relationship between microorganisms. The structural equation model suggested that the enzyme inducer promoted the utilization of amino acids by the fungus and facilitated the conversion of precursors to humic substance components. These findings provided a direction for improving the quality of composting products from agricultural straw waste. It also provided theoretical support for adding MnSO4 to compost.
Collapse
Affiliation(s)
- Linying Mu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Runshi Dong
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqi Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jieyu Yue
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Lina Pan
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Caihong Song
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
14
|
Zhou Z, Shi X, Bhople P, Jiang J, Chater CCC, Yang S, Perez-Moreno J, Yu F, Liu D. Enhancing C and N turnover, functional bacteria abundance, and the efficiency of biowaste conversion using Streptomyces-Bacillus inoculation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120895. [PMID: 38626487 DOI: 10.1016/j.jenvman.2024.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Microbial inoculation plays a significant role in promoting the efficiency of biowaste conversion. This study investigates the function of Streptomyces-Bacillus Inoculants (SBI) on carbon (C) and nitrogen (N) conversion, and microbial dynamics, during cow manure (10% and 20% addition) and corn straw co-composting. Compared to inoculant-free controls, inoculant application accelerated the compost's thermophilic stage (8 vs 15 days), and significantly increased compost total N contents (+47%) and N-reductase activities (nitrate reductase: +60%; nitrite reductase: +219%). Both bacterial and fungal community succession were significantly affected by DOC, urease, and NH4+-N, while the fungal community was also significantly affected by cellulase. The contribution rate of Cupriavidus to the physicochemical factors of compost was as high as 83.40%, but by contrast there were no significantly different contributions (∼60%) among the top 20 fungal genera. Application of SBI induced significant correlations between bacteria, compost C/N ratio, and catalase enzymes, indicative of compost maturation. We recommend SBI as a promising bio-composting additive to accelerate C and N turnover and high-quality biowaste maturation. SBI boosts organic cycling by transforming biowastes into bio-fertilizers efficiently. This highlights the potential for SBI application to improve plant growth and soil quality in multiple contexts.
Collapse
Affiliation(s)
- Ziyan Zhou
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Parag Bhople
- Crops, Environment, And Land Use Department, Environment Research Centre, Teagasc, Johnstown Castle, Wexford, Y35TC98, Ireland
| | - Jishao Jiang
- School of Environment, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Caspar C C Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK; Plants, Photosynthesis, and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Shimei Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jesus Perez-Moreno
- Colegio de Postgraduados, Campus Montecillo, Edafologia, Texcoco, 56230, Mexico
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
15
|
Zhuo Cai J, Lan Yu Y, Biao Yang Z, Xun Xu X, Chun Lv G, Lian Xu C, Yin Wang G, Qi X, Li T, Bon Man Y, Hung Wong M, Cheng Z. Synergistic improvement of humus formation in compost residue by fenton-like and effective microorganism composite agents. BIORESOURCE TECHNOLOGY 2024; 400:130703. [PMID: 38631654 DOI: 10.1016/j.biortech.2024.130703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Improving the humification of compost through a synergistic approach of biotic and abiotic methods is of great significance. This study employed a composite reagent, comprising Fenton-like agents and effective microorganisms (EM) to improve humification. This composite reagent increased humic-acid production by 37.44 %, reaching 39.82 g kg-1, surpassing the control group. The composite reagent synergistically promoted micromolecular fulvic acid and large humic acid production. Collaborative mechanism suggests that Fenton-like agents contributed to bulk residue decomposition and stimulated the evolution of microbial communities, whereas EMs promoted highly aromatic substance synthesis and adjusted the microbial community structure. Sequencing analysis indicates the Fenton-like agent initiated compost decomposition by Firmicutes, and EM reduced the abundance of Virgibacillus, Lentibacillus, and Alcanivorax. Applied as an organic fertilizer in Brassica chinensis L. plantations, the composite reagent considerably improved growth and photosynthetic pigment content. This composite reagent with biotic and abiotic components provides a learnable method for promoting humification.
Collapse
Affiliation(s)
- Jun Zhuo Cai
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Ying Lan Yu
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Zhan Biao Yang
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Xiao Xun Xu
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Guo Chun Lv
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Chang Lian Xu
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Gui Yin Wang
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Xin Qi
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Ting Li
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Yu Bon Man
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Zhang Cheng
- School of Environmental Sciences, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
16
|
Su Y, Zhou L, Zhuo Q, Fang C, You J, Han L, Huang G. Microbial mechanisms involved in negative effects of amoxicillin and copper on humification during composting of dairy cattle manure. BIORESOURCE TECHNOLOGY 2024; 399:130623. [PMID: 38518876 DOI: 10.1016/j.biortech.2024.130623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Livestock manure often contains various pollutants. The aim of this study was to investigate how adding amoxicillin (AMX), Cu, and both AMX and Cu (ACu) affected humification during composting and the microbial mechanisms involved. The cellulose degradation rates were 16.96%, 10.86%, and 9.01% lower, the humic acid contents were 18.71%, 12.89%, and 16.78% lower, and the humification degrees were 24.72%, 24.16%, and 15.73% lower for the AMX, Cu, and ACu treatments, respectively, than the control. Adding AMX and Cu separately or together inhibited humic acid formation and decreased the degree of humification, but the degree of humification was decreased less by ACu than by AMX or Cu separately. The ACu treatment decreased the number of core bacteria involved in humic acid formation and decreased carbohydrate and amino acid metabolism during the maturing period, and thereby delayed humic acid formation and humification. The results support composting manure containing AMX and Cu.
Collapse
Affiliation(s)
- Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ling Zhou
- Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, Xinjiang 843300, China
| | - Qianting Zhuo
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chen Fang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China; College of Agriculture, Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Jia You
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
17
|
Zhou S, He Y, Jiao M, Li Q, Ren X, Awasthi MK, Li R, Zhang Z. Simultaneous mitigation of greenhouse gases and ammonia by boric acid during composting: Emission reduction potentials and microbial mechanisms. JOURNAL OF CLEANER PRODUCTION 2024; 451:142139. [DOI: 10.1016/j.jclepro.2024.142139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
18
|
Jiang L, Dai J, Wang L, Chen L, Zeng G, Liu E, Zhou X, Yao H, Xiao Y, Fang J. Effect of nitrogen retention composite additives Ca(H 2PO 4) 2 and MgSO 4 on the degradation of lignocellulose, compost maturation, and fungal communities in compost. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32992-w. [PMID: 38558335 DOI: 10.1007/s11356-024-32992-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
This study investigated the effects of the nitrogen retention composite additives Ca(H2PO4)2 and MgSO4 on lignocellulose degradation, maturation, and fungal communities in composts. The study included control (C, without Ca(H2PO4)2 and MgSO4), 1% Ca(H2PO4)2 + 2% MgSO4 (CaPM1), 1.5% Ca(H2PO4)2 + 3% MgSO4 (CaPM2). The results showed that Ca(H2PO4)2 and MgSO4 enhanced the degradation of total organic carbon (TOC) and promoted the degradation of lignocellulose in compost, with CaPM2 showing the highest TOC and lignocellulose degradation. Changes in the three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM) of dissolved organic matter (DOM) components in compost indicated that the treatment group with the addition of Ca(H2PO4)2 and MgSO4 promoted the production of humic acids (HAs) and increased the degree of compost decomposition, with CaPM2 demonstrating the highest degree of decomposition. The addition of Ca(H2PO4)2 and MgSO4 modified the composition of the fungal community. Ca(H2PO4)2 and MgSO4 increased the relative abundance of Ascomycota, decreased unclassified_Fungi, and Glomeromycota, and activated the fungal genera Thermomyces and Aspergillus, which can degrade lignin and cellulose during the thermophilic stage of composting. Ca(H2PO4)2 and MgSO4 also increased the abundance of Saprotroph, particularly undefined Saprotroph. In conclusion, the addition of Ca(H2PO4)2 and MgSO4 in composting activated fungal communities involved in lignocellulose degradation, promoted the degradation of lignocellulose, and enhanced the maturation degree of compost.
Collapse
Affiliation(s)
- Lihong Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China
| | - Jiapeng Dai
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lutong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guangxi Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Erlun Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangdan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Yao
- Board of Directors Department, Changsha IMADEK Intelligent Technology Company Limited, Changsha, 410137, China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China.
| |
Collapse
|
19
|
Dong S, Wei Y, Yu Q, Gao Y, Chen H, Zhou K, Cheng M, Wang B, Wei Y, Hu X. Inoculating functional bacteria improved the humification process by regulating microbial networks and key genera in straw composting by adding different nitrogen sources. BIORESOURCE TECHNOLOGY 2024; 393:130022. [PMID: 37979883 DOI: 10.1016/j.biortech.2023.130022] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
The aim of this study was to compare the effect of functional inoculant and different nitrogen sources on the relationship among lignocellulose, precursors, and humus as well as their interactions with bacterial genera in straw composting. Results showed that inoculation improved the heating process and retained more nitrate compared to control. Inoculation increased the degradation of lignocellulosic components by 26.9%-81.6% and the formation of humus by 15.7%-23.0%. Bioinformatics analysis showed that inoculation enriched key genera Chryseolinea in complex nitrogen source (pig manure) compost and Pusillimas, Luteimonas, and Flavobacteria in single nitrogen source (urea) compost, which were related to humus formation. Network analysis found that inoculation and urea addition improved the microbial synergistic effect and inoculation combined with pig manure had more complex modularity and interactions. Combining the functional bacterial inoculant with urea helped to enhance the degradation of lignocellulose and humification process during straw composting especially with single nitrogen source.
Collapse
Affiliation(s)
| | - Yiyang Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qi Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunfei Gao
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Heshu Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Bo Wang
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Xiaomei Hu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
20
|
Song C, Gao Y, Sun Q, Zhao Y, Qi H, Chen Z, Li J, Wang S, Wei Z. Insight into the pathways of biochar/smectite-induced humification during chicken manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167298. [PMID: 37742972 DOI: 10.1016/j.scitotenv.2023.167298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
As representative organic and inorganic additives, both biochar and smectite exhibit an excellent capacity to improve humification efficiency during composting. Nevertheless, the mechanisms underlying biochar/smectite-induced compost humification have still not been fully explored from the perspective of overall organic substances. In this study, three composting treatments were performed as follows: 10 % biochar-amended composting, 10 % smectite-amended composting and natural composting without any additive. UV-visible parameters and synchronous hetero two-dimensional correlation spectra showed that biochar accelerated dissolved organic matter (DOM) complications, unsaturation and aromatization. For example, biochar promoted the C2 and simple C3 peaks to convert into a sophisticated C3/360 peak. However, the effect of smectite was negligible in complicating the DOM structure. Both biochar and smectite displayed an invigorating role in promoting humic substance (HS) formation. The strengthened relations between bacterial richness and physicochemical indicators and HS fractions might contribute to the positive action of biochar/smectite on HS synthesis. Network analysis showed that both bacterial functional omnipotence and specialization in response to the addition of catalysts may contribute to compost humification. The chemical pathway involved in DOM humification was intensified by enhancing the role of pH in biochar composting and weakening the degradation of unsaturated aromatic compounds of DOM with smectite addition. These findings benefit the practical application of biochar/smectite in promoting composting efficiency.
Collapse
Affiliation(s)
- Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunxiang Gao
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Qihaoqiang Sun
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hui Qi
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Zhiru Chen
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Shenghui Wang
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Zimin Wei
- College of Life Science, Liaocheng University, Liaocheng 252000, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
21
|
Zhou S, Jia P, Xu W, Shane Alam S, Zhang Z. A novel composting system for mitigating ammonia emissions and producing nitrogen-rich organic fertilizer. BIORESOURCE TECHNOLOGY 2023; 386:129455. [PMID: 37419288 DOI: 10.1016/j.biortech.2023.129455] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Ammonia emissions not only lead to environmental pollution but also reduce the quality of compost products. Here, a novel composting system (condensation return composting system, CRCS) was designed for mitigating ammonia emissions. The results showed that the CRCS reduced ammonia emissions by 59.3% and increased the total nitrogen content by 19.4% compared with the control. By integrating the results of nitrogen fraction conversion, ammonia-assimilating enzyme activity, and structural equation modeling, it was found that the CRCS facilitated the conversion of ammonia to organic nitrogen by stimulating ammonia-assimilating enzyme activity and ultimately retained nitrogen in the compost product. Moreover, the pot experiment confirmed that nitrogen-rich organic fertilizer produced by the CRCS significantly increased the fresh weight (45.0%), root length (49.2%), and chlorophyll content (11.7%) of pakchoi. This study provides a promising strategy for mitigating ammonia emissions and producing nitrogen-rich organic fertilizer with high agronomic value.
Collapse
Affiliation(s)
- Shunxi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Peiyin Jia
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wanying Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Syed Shane Alam
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
22
|
Wang W, Dong L, Zhai T, Wang W, Wu H, Kong F, Cui Y, Wang S. Bio-clogging mitigation in constructed wetland using microbial fuel cells with novel hybrid air-photocathode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163423. [PMID: 37062319 DOI: 10.1016/j.scitotenv.2023.163423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Excessive accumulation of extracellular polymeric substances (EPS) in constructed wetland (CW) substrate can lead to bio-clogging and affect the long-term stable operation of CW. In this study, a microbial fuel cell (MFC) was coupled with air-photocathode to mitigate CW bio-clogging by enhancing the micro-electric field environment. Because TiO2/biochar could catalyze and accelerate oxygen reduction reaction, further promoting the gain of electric energy, the electricity generation of the tandem CW-photocatalytic fuel cell (CW-PFC) reached 90.78 mW m-3. After bio-clogging was mitigated in situ in tandem CW-PFC, the porosity of CW could be restored to about 62.5 % of the initial porosity, and the zeta potential of EPS showed an obvious increase (-14.98 mV). The removal efficiencies of NH4+-N and chemical oxygen demand (COD) in tandem CW-PFC were respectively 31.8 ± 7.2 % and 86.1 ± 6.8 %, higher than those in control system (21.1 ± 11.0 % and 73.3 ± 5.6 %). Tandem CW-PFC could accelerate the degradation of EPS into small molecules (such as aromatic protein) by enhancing the electron transfer. Furthermore, microbiome structure analysis indicated that the enrichment of characteristic microorganisms (Anaerovorax) for degradation of protein-related pollutants, and electroactive bacteria (Geobacter and Trichococcus) promoted EPS degradation and electron transfer. The degradation of EPS might be attributed to the up-regulation of the abundances of carbohydrate and amino acid metabolism. This study provided a promising new strategy for synergic mitigation and prevention of bio-clogging in CW by coupling with MFC and photocatalysis.
Collapse
Affiliation(s)
- Wenyue Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Liu Dong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Tianyu Zhai
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Wenpeng Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Huazhen Wu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Yuqian Cui
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| |
Collapse
|
23
|
Zhang D, Li X, Li H, Xu Y. Microbial inoculants enhance the persistence of antibiotic resistance genes in aerobic compost of food waste mainly by altering interspecific relationships. BIORESOURCE TECHNOLOGY 2023:129443. [PMID: 37399957 DOI: 10.1016/j.biortech.2023.129443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The effects of microbial inoculants on ARG removal in composting are poorly understood. Here, a co-composting method for food waste and sawdust amended with different microbial agents (MAs) was designed. The results show that the compost without MA unexpectedly achieved the best ARG removal. The addition of MAs markedly increased the abundance of tet, sul and multidrug resistance genes (p < 0.05). Structural equation modeling demonstrated that MAs can enhance the contribution of the microbial community to ARG changes by reshaping community structure and altering the ecological niche, causing the proliferation of individual ARGs, an effect related to the MA component. Network analysis revealed that inoculants weakened the correlation between ARGs and community but increased the linkage between ARGs and core species, suggesting that inoculant-induced ARG proliferation may correspond with gene exchange occurring mainly between core species. The outcome provides new insights into MA application for ARG removal in waste treatment.
Collapse
Affiliation(s)
- Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
24
|
Zhou S, Jiang Z, Shen J, Yao Q, Yang X, Li X, Awasthi MK, Zhang Z. Biochar-amended compost as a promising soil amendment for enhancing plant productivity: A meta-analysis study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163067. [PMID: 36972883 DOI: 10.1016/j.scitotenv.2023.163067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
A meta-analysis was conducted to evaluate the effect of biochar-amended compost (BAC) on plant productivity (PP) and soil quality. The analysis was based on observations from 47 peer-reviewed publications. The results showed that BAC application significantly increased PP by 74.9 %, the total nitrogen content of soil by 37.6 %, and the organic matter content of soil by 98.6 %. Additionally, BAC application significantly decreased the bioavailability of cadmium (-58.3 %), lead (-50.1 %), and zinc (-87.3 %). However, the bioavailability of copper increased by 30.1 %. The study explored the key factors regulating the response of PP to BAC through subgroup analysis. It was found that the increase in the organic matter content of the soil was the key mechanism for PP improvement. The recommended rate of BAC application for improving PP was found to be between 10 and 20 t ha-1. Overall, the findings of this study are significant in providing data support and technical guidance for the application of BAC in agricultural production. However, the high heterogeneity of BAC application conditions, soil properties, and plant types suggests that site-specific factors should be considered when applying BAC to soils.
Collapse
Affiliation(s)
- Shunxi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhixiang Jiang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Junfang Shen
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qixing Yao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xu Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiaobin Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|