1
|
Kao C, Zhang Q, Li J, Liu J, Li W, Peng Y. Rapid start-up and metabolic evolution of partial denitrification/anammox process by hydroxylamine stimulation: Nitrogen removal performance, biofilm characteristics and microbial community. BIORESOURCE TECHNOLOGY 2025; 418:131959. [PMID: 39667627 DOI: 10.1016/j.biortech.2024.131959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Enhanced nitrogen removal by hydroxylamine (NH2OH) on anammox-related process recently received attention. This study investigated the impact of NH2OH on the partial-denitrification/anammox (PDA) biosystem. Results show that NH2OH (≤10 mg N/L) immediately induced nitrite accumulation and provided sufficient NO2- to anammox, achieving a 18.1 ± 4.3 % increase of nitrogen removal efficiency compared to the absence of NH2OH. Long-term exposure to NH2OH accelerated the functional microbial community transformation to PDA. Thauera was highly enriched (6.1 % → 26.9 %) along with Candidatus Brocadia increased in the biofilms, which mainly favor the coupling process of nitrate reduction and anammox. Although the migration mechanism of anammox and denitrifier revealed by CLSM-FISH alleviates the adverse effects of NH2OH, the anammox was inhibited when NH2OH exceeding 15 mg N/L through destroying the inner reduction of NO2-. These results suggested appropriate NH2OH addition favors the synergy between denitrifying and anammox bacteria, providing a promising option for wastewater treatment.
Collapse
Affiliation(s)
- Chengkun Kao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
2
|
Ji J, Zhao Y, Wu G, Hu F, Yang H, Bai Z, Jin B, Yang X. Responses of endogenous partial denitrification process to acetate and propionate as carbon sources: Nitrite accumulation performance, microbial community dynamic changes, and metagenomic insights. WATER RESEARCH 2024; 268:122680. [PMID: 39490096 DOI: 10.1016/j.watres.2024.122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Endogenous partial denitrification (EPD) offered a promising pathway for supplying nitrite to anammox, and it also enabled energy-efficient and cost-effective nitrogen removal. However, information about the impact of different carbon sources on the EPD system was limited, and the metabolic mechanisms remained unclear. This study operated the EPD system for 180 days with various acetate and propionate ratios over eight phases. The nitrate-to-nitrite transformation ratio (NTR) decreased from 81.7 % to 0.4 % as the acetate/propionate (Ac/Pr) ratio shifted from 3:0 to 0:3, but the NTR returned to 86.1 % after propionate was replaced with acetate. Typical cycles indicated that PHB (126.8 and 133.9 mg COD/g VSS, respectively) was mainly stored, facilitating a higher NTR (87.8 % and 67.7 %, respectively) on days 58 and 180 in the presence of acetate. In contrast, on day 158 in the presence of propionate, PHV (84.8 mg COD/g VSS) was predominantly stored, resulting in negligible nitrite accumulation (0.2 mg N/L). Metagenomic analysis revealed that the microbial community structure did not significantly change, and the (narGHI+napAB)/nirKS ratio consistently exceeded 7:2, despite variations in the carbon source. Compared with acetate, propionate as carbon source reduced the abundance of genes encoding NADH-producing enzymes (e.g., mdh), likely owing to a shift in PHAs synthesis and degradation pathways. Consequently, limited NADH affected electron distribution and transfer rates, thereby decreasing the nitrate reduction rate and causing nitrite produced by narGHI and napAB to be immediately reduced by nirKS. This study provided new insights and guidance for EPD systems to manage the conditions of carbon deficiency or complex carbon sources.
Collapse
Affiliation(s)
- Jiantao Ji
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying Zhao
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Guanqi Wu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Feiyue Hu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Haosen Yang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhixuan Bai
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Baodan Jin
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Xiaoxuan Yang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471000, China; Zhengzhou Yufang Environmental Protection Technology Co., Ltd, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Wang R, Liu J, Zhang Q, Li X, Wang S, Peng Y. Robustness of the anammox process at low temperatures and low dissolved oxygen for low C/N municipal wastewater treatment. WATER RESEARCH 2024; 252:121209. [PMID: 38309058 DOI: 10.1016/j.watres.2024.121209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/25/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Low water temperatures and ammonium concentrations pose challenges for anammox applications in the treatment of low C/N municipal wastewater. In this study, a 10 L-water bath sequencing batch reactor combing biofilm and suspended sludge was designed for low C/N municipal wastewater treatment. The nitrogen removal performance via partial nitrification anammox-(endogenous) denitrification anammox process was investigated with anaerobic-aerobic-anoxic mode at low temperatures and dissolved oxygen (DO). The results showed that with the decrease of temperature from 30 to 15℃, the influent and effluent nitrogen concentrations and nitrogen removal efficiencies were 73.7 ± 6.5 mg/L, 7.8 ± 2.8 mg/L, and 89.4 %, respectively, with aerobic hydraulic retention time of only 6 h and DO concentration of 0.2-0.5 mg/L. Among that, the stable anammox process compensated for the inhibitory effects of the low temperatures on the nitrification and denitrification processes. Notably, from 30 to 15℃, the anammox activity and relative abundance of the dominant Brocadia genus were increased from 39.7 to 45.5 mgN/gVSS/d and 7.3 to 12.0 %, respectively; the single gene expression level of the biofilm increased 9.0 times. The anammox bacteria showed a good adaptation to temperatures reduction. However, nitrogen removal by anammox was not improved by increasing DO (≥ 4 mg/L) at 8-4℃. Overall, the results of this study demonstrate the feasibility of the mainstream anammox process at low temperatures.
Collapse
Affiliation(s)
- Rui Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
4
|
Huang K, He Y, Wang W, Jiang R, Zhang Y, Li J, Zhang XX, Wang D. Temporal differentiation in the adaptation of functional bacteria to low-temperature stress in partial denitrification and anammox system. ENVIRONMENTAL RESEARCH 2024; 244:117933. [PMID: 38097061 DOI: 10.1016/j.envres.2023.117933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/18/2023]
Abstract
Despite reliable nitrite supply through partial denitrification, the adaptation of denitrifying bacteria to low temperatures remains elusive in partial denitrification and anammox (PDA) systems. Here, temporal differentiations of the structure, activity, and relevant cold-adaptation mechanism of functional bacteria were investigated in a lab-scale PDA bioreactor at decreased temperature. Although distinct denitrifying bacteria dominated after low-temperature stress, both short- and long-term stresses exerted differential selectivity towards the species with close phylogenetic distance. Species Azonexus sp.149 showed high superiority over Azonexus sp.384 under short-term stress, and long-term stress improved the adaptation of Aquabacterium sp.93 instead of Aquabacterium sp.184. The elevated transcription of nitrite reductase genes suggested that several denitrifying bacteria (e.g., Azonexus sp.149) could compete with anammox bacteria for nitrite. Species Rivicola pingtungensis and Azonexus sp.149 could adapt through various adaptation pathways, such as the two-component system, cold shock protein (CSP), membrane alternation, and electron transport chain. By contrast, species Zoogloea sp.273 and Aquabacterium sp.93 mainly depended on the CSP and oxidative stress response. This study largely deepens our understanding of the performance deterioration in PDA systems during cold shock and provides several references for efficient adaptation to seasonal temperature fluctuation.
Collapse
Affiliation(s)
- Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Institute of Environmental Research at Greater Bay/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; Nanjing Jiangdao Institute of Environmental Research Co., Ltd., Nanjing, 210019, China
| | - Yang He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Wuqiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; LingChao Supply Chain Management Co., Ltd., Shenzhen, 518000, China
| | - Ruiming Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yujie Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jialei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
5
|
Xiong L, Li X, Li J, Zhang Q, Zhang L, Wu Y, Peng Y. Efficient nitrogen removal from real municipal wastewater and mature landfill leachate using partial nitrification-simultaneous anammox and partial denitrification process. WATER RESEARCH 2024; 251:121088. [PMID: 38198976 DOI: 10.1016/j.watres.2023.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Anaerobic ammonia oxidation (anammox) of municipal wastewater is a research focus, especially the combined treatment with mature landfill leachate is a current research hotspot. In this study, municipal wastewater was treated by partial nitrification via sequencing batch reactor (SBR), and its effluent and mature landfill leachate were then mixed into an up-flow anaerobic sludge blanket (UASB) for simultaneous anammox and partial denitrification reaction. Through partial nitrification, a high nitrite accumulation rate (93.0 ± 3.8 %) was achieved by low dissolved oxygen (0.5-1.6 mg/L) and controlled aerobic time (3.5 h) in SBR. The UASB system was responsible for 78.8 ± 2.1 % nitrogen removal of the entire system with a hydraulic reaction time (HRT) of 3.8 h, accompanied by the anammox contribution up to 89.4 ± 6.0 %. The overall partial nitrification-simultaneous anammox and partial denitrification (PN-SAPD) system was controlled at a total COD/TIN of 2.8 ± 0.3 and a total HRT of only 10.2 h, achieving the nitrogen removal efficiency and effluent TIN were 95.2 ± 2.2 % and 3.4 ± 1.5 mg/L, respectively. The qPCR results showed functional genes (hzsA(B), hdh) associated with anaerobic ammonia-oxidizing bacteria (AnAOB), whose high gene copy abundance and transcription expression ensured the removal of major nitrogen from municipal wastewater and mature landfill leachate. 16S amplicon sequencing showed that the Ca. Brocadia (9.72-12.6 %) was further enrichment after sodium acetate was added, and the transcription expression of Thauera (0.5-7.0 %) caused nitrate to nitrite. The high abundance of related enzymes (hao, hzs, hdh, narGHI) involved in anammox and partial denitrification processes were found in the macrogenomic sequencing, and only Ca. Brocadia was involved in multi-pathway nitrogen metabolism in AnAOB. Based on the efficient nitrogen removal by AnAOB and denitrifying bacteria, this modified PN-SAPD process provides a new option for the co-treatment of mature landfill leachate in municipal wastewater treatment plants.
Collapse
Affiliation(s)
- Lulu Xiong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - You Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
6
|
Jin B, Liu Y, Chen X, Zhou X, Jia Y, Wang J, Du J, Cao X, Wang B, Ji J. Insight into the potentiality of nano zero-valent iron on enhancing the nitrite accumulation and phosphorus removal performance of endogenous partial denitrification systems. CHEMOSPHERE 2024; 352:141304. [PMID: 38309602 DOI: 10.1016/j.chemosphere.2024.141304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Endogenous partial denitrification (EPD) has drawn a lot of interest due to its abundant nitrite (NO2--N) accumulation capacity. However, the poor phosphate (PO43--P) removal rate of EPD restricts its promotion and application. In this study, the potentiality of various nano zero-valent iron (nZVI) concentrations (0, 20, 40, and 80 mg/L) on NO2--N accumulation and PO43--P removal in EPD systems had been investigated. Results showed that nZVI improved NO2--N accumulation and PO43--P removal, with the greatest nitrate-to-nitrite transformation ratio (NTR) and PO43--P removal rate of 97.74 % and 64.76 % respectively at the optimum nZVI level (80 mg/L). Microbial community analysis also proved that nZVI had a remarkable influence on the microbial community of EPD. Candidatus_Competibacter was contribute to NO2--N accumulation which was enriched from 24.74 % to 40.02 %. The enrichment of Thauera, Rhodobacteraceae, Pseudomonas were contributed to PO43--P removal. The chemistry of nZVI not only compensated for the deficiency of biological PO43--P removal, but also enhanced NO2--N enrichment. Therefore, nZVI had the huge potentiality to improve the operational performance of the EPD system.
Collapse
Affiliation(s)
- Baodan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| | - Ye Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Xin Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Xianming Zhou
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yusheng Jia
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jiacheng Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jingjing Du
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Xia Cao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Baogui Wang
- Central Plains Environmental Protection Co., LCD, Zhengzhou, 450001, China
| | - Jiantao Ji
- Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
7
|
Peng Z, Zhang Q, Li X, Gao S, Jiang C, Peng Y. Achieving rapid endogenous partial denitrification by regulating competition and cooperation between glycogen accumulating organisms and phosphorus accumulating organisms from conventional activated sludge. BIORESOURCE TECHNOLOGY 2024; 393:130031. [PMID: 37993071 DOI: 10.1016/j.biortech.2023.130031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
In anaerobic/aerobic/anoxic (A/O/A) process, endogenous denitrification (ED) is critically important, and achieving steady endogenous partial denitrification (EdPD) is crucial to carbon saving and anammox application. In this study, EdPD was rapidly realized from conventional activated sludge by expelling phosphorus accumulating organisms (PAOs) in anaerobic/anoxic (A/A) mode during 40 days, with nitrite transformation rate (NTR) surging to 82.8 % from 29.4 %. Competibacter was the prime EdPD-fulfilling bacterium, soaring to 28.9 % from 0.5 % in phase II. Afterwards, balance of high NTR and phosphorus removal efficiency (PRE) were attained by well regulating competition and cooperation between PAOs and glycogen accumulating organisms (GAOs) in A/O/A mode, when the Competibacter (21.7 %) and Accumulibacter (7.3 %, mainly Acc_IIC and Acc_IIF) were in dominant position with balance. The PRE recovered to 88.6 % and NTR remained 67.7 %. Great balance of GAOs and PAOs contributed to advanced nitrogen removal by anammox.
Collapse
Affiliation(s)
- Zhihao Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shouyou Gao
- Beijing General Municipal Engineering Design & Research Institute Co., Ltd, Beijing 100082, PR China
| | - Caifang Jiang
- Guangxi Nanning Water Co.,Ltd, Nanning 530028, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
8
|
Zeng Z, Wang Y, Zhu W, Xie T, Li L. Effect of COD/ NO3−-N ratio on nitrite accumulation and microbial behavior in glucose-driven partial denitrification system. Heliyon 2023; 9:e14920. [PMID: 37123922 PMCID: PMC10130780 DOI: 10.1016/j.heliyon.2023.e14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
COD/NO3 --N ratio was considered to be one of the key factors achieving effective nitrite accumulation during partial denitrification. In two parallel reactors incubated with glucose as carbon source at COD/NO3 --N of 3 and 5, respectively, the microbial community structure shift and the nitrite accumulation performance during long-term operation were investigated. The maximum nitrite accumulation ratios at COD/NO3 --N of 3 and 5 were 17.9% and 47.04%, respectively. Thauera was the dominant genus in both reactors on day 220 with the relative abundance of 18.67% and 64.01%, respectively. Batch experiments with different electron acceptors suggested that the distinction in nitrite accumulation at COD/NO3 --N of 3 and 5 might be caused by the differences in the abundance of Thauera.
Collapse
|