1
|
Kim M, Jung S, Kang S, Rhie MN, Song M, Shin J, Shin SG, Lee J. Magnetite particles accelerate methanogenic degradation of highly concentrated acetic acid in anaerobic digestion process. ENVIRONMENTAL RESEARCH 2024; 255:119132. [PMID: 38735380 DOI: 10.1016/j.envres.2024.119132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
The anaerobic digestion (AD) process has become significant for its capability to convert organic wastewater into biogas, a valuable energy source. Excessive acetic acid accumulation in the anaerobic digester can inhibit methanogens, ultimately leading to the deterioration of process performance. Herein, the effect of magnetite particles (MP) as an enhancer on the methanogenic degradation of highly-concentrated acetate (6 g COD/L) was examined through long-term sequential AD batch tests. Bioreactors with (AM) and without (AO) MP were compared. AO experienced inhibition and its methane production rate (qm) converged to 0.45 L CH4/g VSS/d after 10 sequential batches (AO10, the 10th batch in a series of the sequential batch tests conducted using bioreactors without MP addition). In contrast, AM achieved 3-425% higher qm through the sequential batches, indicating that MP could counteract the inhibition caused by the highly-concentrated acetate. MP addition to inhibited bioreactors (AO10) successfully restored them, achieving qm of 1.53 L CH4/g VSS/d, 3.4 times increase from AO10 after 8 days lag time, validating its potential as a recovery strategy for inhibited digesters with acetate accumulation. AM exhibited higher microbial populations (1.8-3.8 times) and intracellular activity (9.3 times) compared to AO. MP enriched Methanosaeta, Peptoclostridium, Paraclostridium, OPB41, and genes related to direct interspecies electron transfer and acetate oxidation, potentially driving the improvement of qm through MP-mediated methanogenesis. These findings demonstrated the potential of MP supplementation as an effective strategy to accelerate acetate-utilizing methanogenesis and restore an inhibited anaerobic digester with high acetate accumulation.
Collapse
Affiliation(s)
- Minjae Kim
- Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University, Busan, 48513, Republic of Korea
| | - Sungyun Jung
- Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University, Busan, 48513, Republic of Korea
| | - Seonmin Kang
- Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University, Busan, 48513, Republic of Korea
| | - Mi Na Rhie
- Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University, Busan, 48513, Republic of Korea; National Fishery Products Quality Management Service, Busan, 49111, Republic of Korea
| | - Minsu Song
- Institute of Sustainable Earth and Environmental Dynamics (SEED), Pukyong National University, Busan, 48547, Republic of Korea
| | - Juhee Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Joonyeob Lee
- Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
2
|
Dong X, Dong A, Liu J, Qadir K, Xu T, Fan X, Liu H, Ji F, Xu W. Impact of Iron Oxide on Anaerobic Digestion of Frass in Biogas and Methanogenic Archaeal Communities' Analysis. BIOLOGY 2024; 13:536. [PMID: 39056727 PMCID: PMC11273746 DOI: 10.3390/biology13070536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
With the increasing prominence of the global energy problem, socioeconomic activities have been seriously affected. Biofuels, as a renewable source of energy, are of great significance in promoting sustainable development. In this study, batch anaerobic digestion (AD) of frass (swine manure after bioconversion by black soldier fly larvae) and co-digestion with corn straw after the addition of iron oxide (Fe3O4) nanoparticles is investigated, as well as the start-up period without inoculation. The biochemical methane potential of pure frass was obtained using blank 1 group and after the addition of various sizes of Fe3O4 nanoparticles for 30 days period, and similarly, the digestion of frass with straw (blank 2) and after the addition of various sizes of Fe3O4 nanoparticles for 61 days period. The results showed that the average gas production was 209.43 mL/gVS, 197.68 mL/gVS, 151.85 mL/gVS, and 238.15 mL/gVS for the blank, ~176 nm, ~164 nm, and ~184 nm, respectively. The average gas production of frass with straw (blank 2) was 261.64 mL/gVS, 259.62 mL/gVS, 241.51 mL/gVS, and 285.98 mL/gVS for blank 2, ~176 nm, ~164 nm, and ~184 nm, respectively. Meanwhile, the accumulated methane production of the ~184 nm group was 2312.98 mL and 10,952.96 mL, respectively, which significantly increased the biogas production compared to the other groups. The methanogenic results of the frass (30 days) indicated that Methanocorpusculum, Methanosarcina, and Methanomassiliicoccus are the important methanogenic species in the AD reactor, while the microbial diversity of the ~184 nm group was optimal, which may be the reason for the high gas production of ~184 nm.
Collapse
Affiliation(s)
- Xiaoying Dong
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; (K.Q.); (F.J.)
| | - Aoqi Dong
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China; (A.D.); (J.L.); (X.F.)
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Juhao Liu
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China; (A.D.); (J.L.); (X.F.)
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Kamran Qadir
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; (K.Q.); (F.J.)
| | - Tianping Xu
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xiya Fan
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China; (A.D.); (J.L.); (X.F.)
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Haiyan Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China;
| | - Fengyun Ji
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; (K.Q.); (F.J.)
| | - Weiping Xu
- School of Chemical Engineering, Ocean, and Life Sciences, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| |
Collapse
|
3
|
Ma K, Wang W, Guo N, Wang X, Zhang J, Jiao Y, Cui Y, Cao Z. Unravelling the resilience of magnetite assisted granules to starvation and oxytetracycline stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132285. [PMID: 37591174 DOI: 10.1016/j.jhazmat.2023.132285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/23/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
Starvation and antibiotics pollution are two frequent perturbations during breeding wastewater treatment process. Supplying magnetite into anaerobic system has been proved efficient to accelerate microbial aggregates and alleviate the adverse effect caused by process disturbance. Nevertheless, whether these magnetite-based granules are still superior over normal granules after a long-term starvation period remains unknown, the responsiveness of these granules to antibiotics stress is also ambiguous. In current study, we investigated the resilience of magnetite-based anaerobic granular sludge (AnGS) to starvation and oxytetracycline (OTC) stress, by unravelling the variations of reactor performance, sludge properties, ARGs dissemination and microbial community. Compared with the AnGS formed without magnetite, the magnetite assisted AnGS appeared more robust defense to starvation and OTC stress. With magnetite supplement, the average methane yield after starvation recovery, 50 mg/L and 200 mg/L OTC stress was enhanced by 48.95%, 115.87% and 488.41%, respectively, accompanied with less VFAs accumulation, improved tetracycline removal rate (76.3-86.6% vs. 51.0-53.5%) and higher ARGs reduction. Meanwhile, magnetite supplement effectively ameliorated the potential sludge breakage by triggering more large granules formation. Trichococcus was considered an important impetus in maintaining the stability of magnetite-based AnGS process. By inducing more syntrophic methanogenesis partnerships, especially for hydrogenotrophic methanogenesis, magnetite ensured the improved reactor performance and stronger resilience at stress conditions.
Collapse
Affiliation(s)
- Kaili Ma
- School of Environment, Henan Normal University, People's Republic of China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, People's Republic of China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453000, Henan, People's Republic of China.
| | - Wei Wang
- School of Environment, Henan Normal University, People's Republic of China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, People's Republic of China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453000, Henan, People's Republic of China
| | - Ning Guo
- School of Environment, Henan Normal University, People's Republic of China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, People's Republic of China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453000, Henan, People's Republic of China
| | - Xiaojie Wang
- School of Environment, Henan Normal University, People's Republic of China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, People's Republic of China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453000, Henan, People's Republic of China
| | - Jie Zhang
- School of Environment, Henan Normal University, People's Republic of China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, People's Republic of China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453000, Henan, People's Republic of China
| | - Yongqi Jiao
- School of Environment, Henan Normal University, People's Republic of China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, People's Republic of China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453000, Henan, People's Republic of China
| | - Yanrui Cui
- School of Environment, Henan Normal University, People's Republic of China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, People's Republic of China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453000, Henan, People's Republic of China
| | - Zhiguo Cao
- School of Environment, Henan Normal University, People's Republic of China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, People's Republic of China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453000, Henan, People's Republic of China
| |
Collapse
|
4
|
Ziganshina EE, Ziganshin AM. Magnetite Nanoparticles and Carbon Nanotubes for Improving the Operation of Mesophilic Anaerobic Digesters. Microorganisms 2023; 11:microorganisms11040938. [PMID: 37110361 PMCID: PMC10141571 DOI: 10.3390/microorganisms11040938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Anaerobic waste processing contributes to the development of the bioenergy sector and solves environmental problems. To date, many technologies have been developed for increasing the rate of the anaerobic digestion process and yield of methane. However, new technological advancements are required to eliminate biogas production inefficiencies. The performance of anaerobic digesters can be improved by adding conductive materials. In this study, the effects of the separate and shared use of magnetite nanoparticles and carbon nanotubes in anaerobic digesters converting high-nitrogen-containing waste, chicken manure, were investigated. The tested nanomaterials accelerated the methane production and increased the decomposition of products from the acidogenesis and acetogenesis stages. The combined use of magnetite nanoparticles and carbon nanotubes gavae better results compared to using them alone or without them. Members of the bacterial classes Bacteroidia, Clostridia, and Actinobacteria were detected at higher levels in the anaerobic digesters, but in different proportions depending on the experiment. Representatives of the genera Methanosarcina, Methanobacterium, and Methanothrix were mainly detected within the methanogenic communities in the anaerobic digesters. The present study provides new data for supporting the anaerobic treatment of substrates with a high content of inhibitory compounds, such as chicken wastes.
Collapse
Affiliation(s)
- Elvira E. Ziganshina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Ayrat M. Ziganshin
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|