1
|
Wang L, Ren Z, Xu Z, Liu L, Chang R, Li Y. Promoting effect of ammonia oxidation on sulfur oxidation during composting: Nitrate as a bridge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 191:13-22. [PMID: 39504837 DOI: 10.1016/j.wasman.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/25/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Ammonia (NH3) and hydrogen sulfide (H2S) are the main odor components in the composting process. Controlling their emissions is very important to reduce environmental pollution and improve the quality of composting products. This study explored the effects of functional bacteria on nitrogen and sulfur metabolism in the composting process of food waste (FW) by adding ammonia-oxidizing bacteria (AOB, A treatment), sulfur-oxidizing bacteria (SOB, S treatment), and combined AOB and SOB (AS treatment), respectively. The key bacterial species involved in nitrogen and sulfur transformation were identified, and the intrinsic mechanisms by which ammonia oxidation drove sulfur oxidation during composting were deciphered. Compared with control treatment (CK), the combined addition of functional microorganisms increased the maximum of soxB gene abundance by 1.72 times, thus resulting in the increase in the SO42- content by 44.00 %. AS treatment decreased the cumulative H2S emission and total sulfur (TS) loss by 40.24 % and 34.69 %, respectively, meanwhile lowering NH3 emission. Correlation network analysis showed that the simultaneous addition of AOB and SOB enhanced the correlation between microorganisms and sulfur oxidation genes, and Acinetobacter, Aeribacillus, Brevibacterium and Ureibacillus might be involved in the ammonia oxidation-promoted sulfur oxidation process. In summary, the optimized inoculation strategy of AOB and SOB could drive biological transformation of nitrogen and sulfur by regulating microbial community, ultimately reducing odor emissions and improving sulfur conservation.
Collapse
Affiliation(s)
- Lingxiao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiping Ren
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhao Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lixin Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ruixue Chang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Chen M, Cao Z, Jing B, Chen W, Wen X, Han M, Wang Y, Liao X, Wu Y, Chen T. The production of methyl mercaptan is the main odor source of chicken manure treated with a vertical aerobic fermenter. ENVIRONMENTAL RESEARCH 2024; 260:119634. [PMID: 39029729 DOI: 10.1016/j.envres.2024.119634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
The process of harmless treatment of livestock manure produces a large amount of odor, which poses a potential threat to human and livestock health. A vertical fermentation tank system is commonly used for the environmentally sound treatment of chicken manure in China, but the composition and concentration of the odor produced and the factors affecting odor emissions remain unclear. In this study, we investigated the types and concentrations of odors produced in the mixing room (MR), vertical fermenter (VF), and aging room (AR) of the system, and analyzed the effects of bacterial communities and metabolic genes on odor production. The results revealed that 34, 26 and 26 odors were detected in the VF, MR and AR, respectively. The total odor concentration in the VF was 66613 ± 10097, which was significantly greater than that in the MR (1157 ± 675) and AR (1143 ± 1005) (P < 0.001), suggesting that the VF was the main source of odor in the vertical fermentation tank system. Methyl mercaptan had the greatest contribution to the odor produced by VF, reaching 47.82%, and the concentration was 0.6145 ± 0.2164 mg/m3. The abundance of metabolic genes did not correlate significantly with odor production, but PICRUSt analysis showed that cysteine and methionine metabolism involved in methyl mercaptan production was significantly more enriched in MR and VF than in AR. Bacillus was the most abundant genus in the VF, with a relative abundance significantly greater than that in the MR (P < 0.05). The RDA results revealed that Bacillus was significantly and positively correlated with methyl mercaptan. The use of large-scale aerobic fermentation systems to treat chicken manure needs to focused on the production of methyl mercaptan.
Collapse
Affiliation(s)
- Majian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen Cao
- Wen's Foodstuff Group Co., Ltd., Yunfu, 527400, China
| | - Boyu Jing
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Wenjun Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Meng Han
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China.
| | - Tao Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Zhu M, Tang Y. Response of sediment microbial communities to the flow effect of the triangular artificial reef: A simulation-based experimental study. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106546. [PMID: 38795576 DOI: 10.1016/j.marenvres.2024.106546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/28/2024]
Abstract
Artificial reefs (ARs), as an important tool for habitat restoration, play significant impacts on benthic microbial ecosystems. This study utilized 16S rRNA gene sequencing technology and computational fluid dynamics (CFD) flow simulation to investigate the effects of flow field distribution around ARs on microbial community structure. The results revealed distinct regional distribution patterns of microbial communities affected by different hydrodynamic conditions. Flow velocity and flow regime of water in sediment-water interface shaped the microbial community structure. The diversity and richness in R-HF were significantly decreased compared to other five regions (p < 0.05). At the phyla and OUT levels, most abundant taxa (1>%) showed an enrichment trend in R-HB. However, more than half of differentially abundant taxa were enriched in R-HB, which was significantly correlated with organic matter (OM). Bugbase phenotypic predictions indicated a low abundance of the anaerobic phenotype in R-HF and a high abundance of the biofilm-forming phenotype in R-HB.
Collapse
Affiliation(s)
- Meiling Zhu
- College of Fisheries, Ocean University of China, Qingdao, 266003, PR China
| | - Yanli Tang
- College of Fisheries, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
4
|
Qiao X, Li P, Zhao J, Li Z, Zhang C, Wu J. Gaining insight into the effect of laccase expression on humic substance formation during lignocellulosic biomass composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171548. [PMID: 38458466 DOI: 10.1016/j.scitotenv.2024.171548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The aim is to enhance lignin humification by promoting laccase activities which can promote lignin depolymerization and reaggregation during composting. 1-Hydroxybenzotriazole (HBT) is employed to conduct laccase mediator system (LMS), application of oxidized graphene (GO) in combination to strengthen LMS. Compared with control, the addition of GO, HBT, and GH (GO coupled with HBT) significantly improved laccase expression and activities (P < 0.05), with lignin humification efficiency also increased by 68.6 %, 36.7 %, and 107.8 %. GH treatment induces microbial expression of laccase by increasing the abundance and synergy of core microbes. The unsupervised learning model, vector autoregressive model and Mantel test function were combined to elucidate the mechanism of action of exogenous materials. The results showed that GO stabilized the composting environment on the one hand, and acted as a support vector to stabilize the LMS and promote the function of laccase on the other. In GH treatment, degradation of macromolecules and humification of small molecules were promoted simultaneously by activating the dual function of laccase. Additionally, it also reveals the GH enhances the humification of lignocellulosic compost by converting phenolic pollutants into aggregates. These findings provide a new way to enhance the dual function of laccase and promote lignin humification during composting. It could effectively achieve the resource utilization of organic solid waste and reduce composting pollution.
Collapse
Affiliation(s)
- Xingyu Qiao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Peiju Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinghan Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zonglin Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chunhao Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Zhao H, Li S, Pu J, Wang H, Dou X. Effects of Bacillus-based inoculum on odor emissions co-regulation, nutrient element transformations and microbial community tropological structures during chicken manure and sawdust composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120328. [PMID: 38354615 DOI: 10.1016/j.jenvman.2024.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
This study aims to evaluate whether different doses of Bacillus-based inoculum inoculated in chicken manure and sawdust composting will provide distinct effects on the co-regulation of ammonia (NH3) and hydrogen sulfide (H2S), nutrient conversions and microbial topological structures. Results indicate that the Bacillus-based inoculum inhibits NH3 emissions mainly by regulating bacterial communities, while promotes H2S emissions by regulating both bacterial and fungal communities. The inoculum only has a little effect on total organic carbon (TOC) and inhibits total sulfur (TS) and total phosphorus (TP) accumulations. Low dose inoculation inhibits total potassium (TK) accumulation, while high dose inoculation promotes TK accumulation and the opposite is true for total nitrogen (TN). The inoculation slightly affects the bacterial compositions, significantly alters the fungal compositions and increases the microbial cooperation, thus influencing the compost substances transformations. The microbial communities promote ammonium nitrogen (NH4+-N), TN, available phosphorus (AP), total potassium (TK) and TS, but inhibit nitrate nitrogen (NO3--N), TP and TK. Additionally, the bacterial communities promote, while the fungal communities inhibit the nitrite nitrogen (NO2--N) production. The core bacterial and fungal genera regulate NH3 and H2S emissions through the secretions of metabolic enzymes and the promoting or inhibiting effects on NH3 and H2S emissions are always opposite. Hence, Bacillus-based inoculum cannot regulate the NH3 and H2S emissions simultaneously.
Collapse
Affiliation(s)
- Huaxuan Zhao
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Shangmin Li
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China.
| | - Junhua Pu
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Hongzhi Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Xinhong Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| |
Collapse
|
6
|
Zhu L, Li W, Huang C, Tian Y, Xi B, Wu W, Yan Y. Contribution of sulfur-containing precursors to release of hydrogen sulfide in sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120195. [PMID: 38306858 DOI: 10.1016/j.jenvman.2024.120195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
Hydrogen sulfide (H2S) production during composting can impact the environment and human health. Especially during the thermophilic phase, H2S is discharged in large quantities. However, in sludge composting, the contributions of different sulfur-containing precursors to H2S fluxes, key functional microorganisms, and key environmental parameters for reducing H2S flux remain unclear. Analysis of cysteine (Cys), methionine (Met), and sulfate (SO42-) concentrations, multiple stepwise regression analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analysis of metagenomes showed that Cys was the main contributor to the production of H2S and that Met was among the main sources during the first three days of composting, while the SO42- contribution to H2S was negligible. Fifteen functional genera involved in the conversion of precursors to H2S were identified by co-occurrence network analysis. Only Bacillus showed high temperature resistance (>50 °C) and the ability to reduce H2S. Redundancy analysis showed that total carbon (64.0 %) and pH (23.3 %) had significant effects on functional bacteria. H2S had a quadratic relationship with sulfur-containing precursors. All microbial network sulfur-containing precursors metabolism modules showed a highly significant relationship with Cys.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weixia Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Yimeng Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
7
|
Zhu L, Li W, Huang C, Tian Y, Xi B. Functional redundancy is the key mechanism used by microorganisms for nitrogen and sulfur metabolism during manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169389. [PMID: 38104842 DOI: 10.1016/j.scitotenv.2023.169389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The microbial ecological functions associated with the nitrogen and sulfur cycles during composting have not been thoroughly elucidated. Using metagenomic sequencing, the microbial mechanisms underlying the nitrogen and sulfur metabolism during livestock and poultry manure composting were investigated in this study. The findings demonstrate that functional redundancy among microorganisms is a crucial factor for the nitrogen and sulfur cycling during livestock and poultry manure composting. Processes such as organic sulfur synthesis, assimilatory sulfate reduction, ammonia assimilation, and denitrification were found to be prevalent. Additionally, there was a certain degree of conservation in nitrogen and sulfur conversion functions among microorganisms at the phylum level. All high-quality metagenomic assembly genomes (MAGs) possessed carbon fixation potential, with 86.3 % of MAGs containing both nitrogen and sulfur conversion genes. Except for bin30, other MAGs encoding sulfur oxidation enzymes were found to be associated with at least one denitrification gene. This suggests a potential interplay between nitrogen and sulfur metabolism among microorganisms. 45, 19, 1, 31, 1, and 2 MAGs could completely regulate organic sulfur synthesis, assimilatory sulfate reduction, thiosulfate oxidation to sulfate, glutamine synthase-glutamate synthase pathway (GS-GOGAT), denitrification, and dissimilatory nitrate reduction, respectively by encoding the required enzymes. TN and pH were the key factors driving the functional redundancy in nitrogen and sulfur microbial community.
Collapse
Affiliation(s)
- Lin Zhu
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Li
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
8
|
Li C, Zhang C, Ran F, Yao T, Lan X, Li H, Bai J, Lei Y, Zhou Z, Cui X. Effects of microbial deodorizer on pig feces fermentation and the underlying deodorizing mechanism. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:174-186. [PMID: 38056366 DOI: 10.1016/j.wasman.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Microbial deodorization is a novel strategy for reducing odor in livestock and poultry feces. Herein, 12 strains of ammonia (NH3) and 15 hydrogen sulfide (H2S) removing bacteria were obtained with a removal efficiency of 65.20-79.80% and 34.90-79.70%, respectively. A novel bacteria deodorant named MIX (Bacillus zhangzhouensis, Bacillus altitudinis, and Acinetobacter pittii at a ratio of 1:1:2) were obtained. MIX can shorten the temperature rising stage by 2 days and prolong the thermophilic stage by 4 days. The ability of MIX to remove NH3, H2S, and volatile fatty acids (VFAs) and the underlying removal mechanism were analyzed during pig feces fermentation. MIX can significantly reduce the concentrations of NH3 and H2S by 41.82% and 66.35% and increase the concentrations of NO3--N and SO42- by 7.80% and 8.83% (P < 0.05), respectively, on the 25th day. Moreover, the concentrations of acetic, propionate, iso-valerate, and valerate were significantly reduced. The dominant bacteria communities at the phylum level were Firmicutes, Proteobacteria, Bacteroidetes, and Spirochaetes. B. zhangzhouensis and B. altitudinis could convert NH4+-N to NO3--N, and A. pittii could transfer H2S to SO42-. This study revealed that bacteria deodorant can reduce the concentrations of NH3, H2S, and VFAs in pig feces and increase those of NH4+, NO3-, and SO42- and has excellent potential in deodorizing livestock and poultry feces composting.
Collapse
Affiliation(s)
- Changning Li
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou, 730070 Gansu, China; College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Chen Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Fu Ran
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Tuo Yao
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou, 730070 Gansu, China; College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| | - Xiaojun Lan
- Agricultural College, Anshun University, Anshun 561000, Guizhou, China
| | - Haiyun Li
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jie Bai
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Yang Lei
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Ze Zhou
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Xiaoning Cui
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| |
Collapse
|
9
|
Zhu L, Huang C, Li W, Wu W, Tang Z, Tian Y, Xi B. Ammonia assimilation is key for the preservation of nitrogen during industrial-scale composting of chicken manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:50-61. [PMID: 37544234 DOI: 10.1016/j.wasman.2023.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/16/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Nitrogen loss from compost is a serious concern, causing severe environmental pollution. The NH4+-N content reflects the release of NH3. However, the nitrogen conversion pathway that has the greatest impact on NH4+-N content is still unclear. This study attempted to explore the key pathways, core functional microorganisms, and mechanisms involved in the transformation of ammonia nitrogen during composting. KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic pathways revealed that ammonia assimilation was dominated by the glutamate dehydrogenase (GDH) pathway (53.4%), which is crucial for nitrogen preservation. The combined analysis of KEGG, NR species annotation, and co-occurrence network identified 20 easy-to-regulate obligate core nitrogen-transforming functional microorganisms, including 18 ammonia-assimilating bacteria. Furthermore, the effects of environmental parameters on the obligate core functional microorganisms were investigated. The present study results provided a theoretical basis for the utilization of ten ammonia-assimilating bacteria, such as Paenibacillus, Erysipelatoclostridium, and Defluviimonas to improve the quality of compost.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weixia Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Zhurui Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
10
|
Liu Y, Yuan H, Zhu N, Yuan Z. Effect of thermal hydrolysis pretreatment on the stabilization of sludge with different solid contents during autothermal thermophilic aerobic digestion. ENVIRONMENTAL RESEARCH 2023:116347. [PMID: 37290618 DOI: 10.1016/j.envres.2023.116347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
Sludge stabilization was affected by solid content during autothermal thermophilic aerobic digestion (ATAD). Thermal hydrolysis pretreatment (THP) could alleviate the issues of high viscosity, slow solubilization and low ATAD efficiency caused by increased solid content. The influence of THP on the stabilization of sludge with different solid contents (5.24%-17.14%) during ATAD was investigated in this study. The results demonstrated that stabilization was achieved with volatile solid (VS) removal of 39.0%-40.4% after 7-9 days of ATAD for sludge with solid content of 5.24%-17.14%. The solubilization of sludge with different solid contents reached 40.1%-45.0% after THP. The rheological analysis indicated that the apparent viscosity of sludge was obviously reduced after THP at different solid contents. The increase in fluorescence intensity of fulvic acid-like organics, soluble microbial by-products and humic acid-like organics in the supernatant after THP and the decrease in fluorescence intensity of soluble microbial by-products after ATAD were detected by excitation emission matrix (EEM). The molecular weight (MW) distribution in the supernatant elucidated that the proportion of 50 kDa < MW < 100 kDa increased to 16%-34% after THP and the proportion of 10 kDa < MW < 50 kDa decreased to 8%-24% after ATAD. High throughput sequencing showed that the dominant bacterial genera shifted from Acinetobacter, Defluviicoccus and Norank_f__norank_o__PeM15 to Sphaerobacter and Bacillus during ATAD. This work revealed that solid content of 13%-17% was appropriate for efficient ATAD and rapid stabilization under THP.
Collapse
Affiliation(s)
- Yangyang Liu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhihang Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|