1
|
Gong P, Jiang C, Wang G, Yu T, Xiao J, Du Y, Song X. Characteristics concerning the evolution of dissolved organic matter and dynamics of bacterial community during continuous thermophilic composting of oxytetracycline fermentation residue. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136877. [PMID: 39675081 DOI: 10.1016/j.jhazmat.2024.136877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Continuous thermophilic composting (CTC) is a potential technique to recycle oxytetracycline fermentation residue (OFR) with the extremely high level of antibiotics but is still not explored. To investigate the efficiency of CTC on treating OFR, the differences between this technique and conventional composting in the evolution of dissolved organic matter and dynamics of bacterial community were compared. The higher degradation efficiency of oxytetracycline (OTC) was obtained in CTC than conventional composting. The transformation of organic matter occurred faster and the maturity degree of compost product was higher in CTC than conventional composting. Compared with conventional composting, CTC increased the bacterial diversity and screened some functional microorganisms related to OTC degradation and organic matter transformation. The results indicate that CTC is a precise strategy for efficiently recycling OFR as soil amendment.
Collapse
Affiliation(s)
- Picheng Gong
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Cuishuang Jiang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Gang Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Tingting Yu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jian Xiao
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yangfan Du
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuan Song
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
2
|
Rex P, Meenakshisundaram N, Barmavatu P. Sustainable valorisation of kitchen waste through greenhouse solar drying and microwave pyrolysis- technology readiness level for the production of biochar. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:381-395. [PMID: 39464812 PMCID: PMC11499482 DOI: 10.1007/s40201-024-00909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/08/2024] [Indexed: 10/29/2024]
Abstract
This study proposes an integrated and sustainable approach for the effective conversion of kitchen waste into valuable products through a two-step process. The primary step involves the implementation of greenhouse solar drying to reduce the moisture content of kitchen waste. The secondary step implies microwave pyrolysis for effective degradation of kitchen waste to biooil, biogas and biochar. Biooil and biogas can be used as renewable fuel source. Biochar can be used as soil amendment. Selection of atmospheric conditions for biochar preparation is discussed, highlighting its crucial role in biochar characteristics. This article highlights, technology readiness level of biochar production from kitchen waste to assess the economic viability for the scalability of the process. In this entirety, the conversion of kitchen waste to valuable products through microwave pyrolysis has significant potential to address the challenges posed by high moisture content and heterogenous nature. With continued research and innovation, it is possible to develop a wide array of value-added products from kitchen waste, ultimately leading to a more eco-friendly and economic approach to waste management. Graphical Abstract
Collapse
Affiliation(s)
- Prathiba Rex
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602 105 India
| | - Nagaraj Meenakshisundaram
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602 105 India
| | - Praveen Barmavatu
- Department of Mechanical Engineering, Faculty of Engineering, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago, Chile
| |
Collapse
|
3
|
Hou T, Zhou Y, Du R, Liu J, Li W, Zhang S, Li M, Chu J, Meng L. Insights into effects of thermotolerant nitrifying and sulfur-oxidizing inoculants on nitrogen-sulfur co-metabolism in sewage sludge composting. J Environ Sci (China) 2024; 144:76-86. [PMID: 38802240 DOI: 10.1016/j.jes.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 05/29/2024]
Abstract
In this study, high temperature thermotolerant nitrifying bacteria (TNB) and high temperature thermotolerant sulfide oxidizing bacteria (TSOB) were obtained from compost samples and inoculated into sewage sludge (SS) compost. The effects of inoculation on physical and chemical parameters, ammonia and hydrogen sulfide release, nitrogen form and sulfur compound content change and physical-chemical properties during nitrogen and sulfur conversion were studied. The results showed that inoculation of TNB and TSOB increased the temperature, pH, OM degradation, C/N ratio and germination index (GI) of compost. Compared with the control treatment (CK), the addition of inoculants reduced the release of NH3 and H2S, and transformed them into nitrogen and sulfur compounds, the hydrolysis of polymeric ferrous sulfate was promoted, resulting in relatively high content of sulfite and sulfate. At the same time, the physical and chemical properties of SS have a strong correlation with nitrogen and sulfur compounds.
Collapse
Affiliation(s)
- Tingting Hou
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Yujie Zhou
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rongchun Du
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Jiali Liu
- Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Muzi Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junhong Chu
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China.
| |
Collapse
|
4
|
Chu XL, Peng XY, Sun ZY, Xie CY, Tang YQ. Converting kitchen waste into value-added fertilizer using thermophilic semi-continuous composting-biofiltration two-stage process with minimized NH 3 emission. BIORESOURCE TECHNOLOGY 2024; 406:130955. [PMID: 38871228 DOI: 10.1016/j.biortech.2024.130955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Thermophilic semi-continuous composting (TSC) is effective for kitchen waste (KW) treatment, but large amounts of NH3-rich odorous gas are generated. This study proposes a TSC-biofiltration (BF) two-stage process. Compost from the front-end TSC was used as the packing material in the BF to remove NH3 from the exhaust gas. The BF process was effective in removing up to 83.7 % of NH3, and the NH3 content was reduced to < 8 ppm. Seven days of BF improved the quality of the product from TSC by enhancing the germination index to 134.6 %, 36.5 % higher than that in the aerated-only group. Microbial community analysis revealed rapid proliferation and eventual dominance in the BF of members related to compost maturation and the nitrogen cycle from Actinobacteria, Proteobacteria, Chloroflexi, and Bacteroidetes. The results suggest that the TSC-BF two-stage process is effective in reducing NH3 emissions from TSC and improving compost quality.
Collapse
Affiliation(s)
- Xiu-Lin Chu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiang-Yu Peng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
5
|
Wang SP, Sun ZY, An MZ, Wang TT, Xia ZY, Tang YQ. Continuous thermophilic composting of distilled grain waste improved organic matter stability and succession of bacterial community. BIORESOURCE TECHNOLOGY 2024; 394:130307. [PMID: 38199442 DOI: 10.1016/j.biortech.2024.130307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Continuous thermophilic composting (CTC) is potentially helpful in shortening the composting cycle. However, its universal effectiveness and the microbiological mechanisms involved are unclear. Here, the physicochemical properties and bacterial community dynamics during composting of distilled grain waste in conventional and CTC models were compared. CTC accelerated the organic matter degradation rate (0.2 vs. 0.1 d-1) and shortened the composting cycle (24 vs. 65 d), mainly driven by the synergism of bacterial genera. Microbial analysis revealed that the abundance of Firmicutes was remarkably improved compared to that in conventional composting, and Firmicutes became the primary bacterial phylum (relative abundance >70 %) during the entire CTC process. Moreover, correlation analysis demonstrated that bacterial composition had a remarkable effect on the seed germination index. Therefore, controlling the composting process under continuous thermophilic conditions is beneficial for enhancing composting efficiency and strengthening the cooperation between bacterial genera.
Collapse
Affiliation(s)
- Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Ming-Zhe An
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin 644007, China
| | - Ting-Ting Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Xu M, Sun H, Yang M, Chen E, Wu C, Gao M, Sun X, Wang Q. Effect of biodrying of lignocellulosic biomass on humification and microbial diversity. BIORESOURCE TECHNOLOGY 2023:129336. [PMID: 37343799 DOI: 10.1016/j.biortech.2023.129336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
By optimizing the carbon to nitrogen (C/N) ratio, this study accomplished an improved level of humification and microbial diversity in the biodrying process of lignocellulosic biomass. The results demonstrated that C/N ratio of 20 accelerated the decomposition of refractory lignocellulose, resulting in lower greenhouse gas emissions and the production of highly mature fertilizer with a germination index of 119.0% and a humic index of 3.2. Moreover, C/N ratio of 20 was found to diversify microbial communities, including Pseudogracilibacillus, Sinibacillus, and Georgenia, which contributed to the decomposition of lignocellulosic biomass and the production of humic acid. Hence, it is recommended to regulate the C/N ratio to 20:1 during the biodrying of biogas residue and wood chips to promote the economic feasibility and bioresource recycling.
Collapse
Affiliation(s)
- Mingyue Xu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Enmiao Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaohong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|