1
|
Chauhan P, Kanaujia PK, Suman SK. Bioremediation of naphthenic acid by Bacillus subtilis: Degradation kinetics and pathway elucidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126383. [PMID: 40339882 DOI: 10.1016/j.envpol.2025.126383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/22/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Naphthenic acids, toxic and persistent carboxylic acids found in petroleum contaminated water, pose a significant environmental challenge, but bioremediation offers a promising and cost-effective solution for their treatment. The present study illustrates the ability of Bacillus subtilis to degrade commercial naphthenic acid (100 mg/L) in aerobic and microaerobic settings under optimized conditions (temperature 36 °C, pH 6.0, and salinity 0.5 %). The degradation was confirmed by 47.61 ± 3.609 % reduction in total organic carbon levels within 144 h, indicating the microbial potential to mineralize organic naphthenic acid in aqueous medium as a sole carbon source. Naphthenic acids, being structurally complex and comprising a diverse array of carboxylic acids, were further studied using two representative models, hexanoic acid (linear) and benzoic acid (aromatic). These representative acids were selected to investigate the degradation kinetics and to elucidate the underlying degradation mechanism. The growth kinetics of B. subtilis on hexanoic acid and benzoic acid followed the Monod growth model, with maximum specific growth rates (μmax) of 0.17344 ± 0.004 and 0.15088 ± 0.006 day-1 respectively. The biodegradation kinetics followed a non-linear first-order rate model, with rate constants (k) of 0.43 ± 0.084 h-1 for hexanoic acid and 0.12 ± 0.02 h-1 for benzoic acid. Corresponding half-lives (t1/2) were determined as 13.37 h for hexanoic acid and 29.52 h for benzoic acid, demonstrating a faster degradation rate for hexanoic acid compared to benzoic acid. GC-MS analysis elucidated the degradation pathway, catechol and muconic acid were identified as the key intermediates, which suggest a potential metabolic breakdown. Consequently, it demonstrates the potential of Bacillus subtilis for the effective removal of naphthenic acids from polluted wastewater.
Collapse
Affiliation(s)
- Pooja Chauhan
- Material Resource Efficiency Division, Council of Scientific and Industrial Research - Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Analytical Sciences Division, Council of Scientific and Industrial Research - Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pankaj Kumar Kanaujia
- Analytical Sciences Division, Council of Scientific and Industrial Research - Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, Council of Scientific and Industrial Research - Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Gezahegn T, Dereje M, Tefera M, Beshaw T, Mulu M, Legesse M, Kokeb A, Lijalem T, Fentie T, Adugna A, Guadie A. Analysis of nutrient loads, heavy metals and physicochemical properties of wastewater, wetland grass, and papaya samples: Gondar Malt factory, Ethiopia with global implication. Toxicol Rep 2024; 12:520-530. [PMID: 38774477 PMCID: PMC11107232 DOI: 10.1016/j.toxrep.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
Robust attention was brought to researchers due to deterioration of wastewater quality of lakes and reservoirs as major global concerns by industrial release. The uncontrolled releases of effluents impose serious impacts for both aquatic and terrestrial environments. In the current study, many parameters like nutrient loads, heavy metals and physicochemical properties of wastewater, wetland grass, and papaya samples were analysed. The investigated nutrients, alkalinity, and total hardness in fresh water samples were within the allowable limits except for phosphate in fresh wastewater and alkalinity in wastewater. The detected levels of heavy metals (mg/L) in wastewater samples were:- Cd (0.386-0.905), Cr (ND-0.074), Cu (0.064-0.096), Mn (0.184-1.528), Fe (0.167-4.636), Zn (0.175-0.333), and Pb (0.044-0.892) (mg/L). The studied metals in the wastewater sample, except Cd, Fe, and Pb were lower than the allowable limit. The level of heavy metals in the grass and papaya samples ranged from Cd (37.14-147.62), Cr (ND-8.82), Cu (3.14-8.33), Mn (2.89-85.46), Fe(5.0-65.15), Zn (3.44-36.84), and Pb (ND-60.36) (mg/kg). The detected metals were below the permissible limits, except Cd, Cr, and Pb. The findings of the physicochemical characteristics in wastewater samples were computed: pH (6.61-8.54), temperatures (21.63-26.57 °C), TDS (205.9-1896 mg/L), EC (359.9-3226.67 μs/cm), BOD (12.0-732.67 mg/L), COD (3.67-1691.33 mg/L). Except for temperature and pH, all levels in the wastewater were above the recommended limit for wastewater discharge by USEPA.
Collapse
Affiliation(s)
- Tesfamariam Gezahegn
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Ethiopia
| | - Meseret Dereje
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Ethiopia
| | - Molla Tefera
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Ethiopia
| | - Tamene Beshaw
- Department of Chemistry, College of Natural and Computational Sciences, Wolkite University, Ethiopia
| | - Mengistu Mulu
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Ethiopia
| | - Mulugeta Legesse
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Ethiopia
| | - Addis Kokeb
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Ethiopia
| | - Tsegu Lijalem
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Ethiopia
| | - Tarekegn Fentie
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Ethiopia
| | - Ayal Adugna
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Ethiopia
| | - Atnafu Guadie
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Ethiopia
| |
Collapse
|
3
|
Kamal N, Saha AK, Singh E, Pandey A, Bhargava PC. Biodegradation of ciprofloxacin using machine learning tools: Kinetics and modelling. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134076. [PMID: 38565014 DOI: 10.1016/j.jhazmat.2024.134076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Recently, the rampant administration of antibiotics and their synthetic organic constitutes have exacerbated adverse effects on ecosystems, affecting the health of animals, plants, and humans by promoting the emergence of extreme multidrug-resistant bacteria (XDR), antibiotic resistance bacterial variants (ARB), and genes (ARGs). The constraints, such as high costs, by-product formation, etc., associated with the physico-chemical treatment process limit their efficacy in achieving efficient wastewater remediation. Biodegradation is a cost-effective, energy-saving, sustainable alternative for removing emerging organic pollutants from environmental matrices. In view of the same, the current study aims to explore the biodegradation of ciprofloxacin using microbial consortia via metabolic pathways. The optimal parameters for biodegradation were assessed by employing machine learning tools, viz. Artificial Neural Network (ANN) and statistical optimization tool (Response Surface Methodology, RSM) using the Box-Behnken design (BBD). Under optimal culture conditions, the designed bacterial consortia degraded ciprofloxacin with 95.5% efficiency, aligning with model prediction results, i.e., 95.20% (RSM) and 94.53% (ANN), respectively. Thus, befitting amendments to the biodegradation process can augment efficiency and lead to a greener solution for antibiotic degradation from aqueous media.
Collapse
Affiliation(s)
- Neha Kamal
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Amal Krishna Saha
- Indian Mine Planners and Consultants, GE-61, Rajdanga, Kolkata, West Bengal, India
| | - Ekta Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
4
|
Qian Y, Guan L, Ke Y, Wang L, Wang X, Yu N, Yu Q, Wei S, Geng J. Unveiling intricate transformation pathways of emerging contaminants during wastewater treatment processes through simplified network analysis. WATER RESEARCH 2024; 253:121299. [PMID: 38387265 DOI: 10.1016/j.watres.2024.121299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
As the key stage for purifying wastewater, elimination of emerging contaminants (ECs) is found to be fairly low in wastewater treatment plants (WWTPs). However, less knowledge is obtained regarding the transformation pathways between various chemical structures of ECs under different treatment processes. This study unveiled the transformation pathways of ECs with different structures in 15 WWTPs distributed across China by simplified network analysis (SNA) we proposed. After treatment, the molecular weight of the whole component of wastewater decreased and the hydrophilicity increased. There are significant differences in the structure of eliminated, consistent and formed pollutants. Amino acids, peptides, and analogues (AAPAs) were detected most frequently and most removable. Benzenoids were refractory. Triazoles were often produced. The high-frequency reactions in different WWTPs were similar, (de)methylation and dehydration occurred most frequently. Different biological treatment processes performed similarly, while some advanced treatment processes differed, such as a significant increase of -13.976 (2HO reaction) paired mass distances (PMDs) in the chlorine alone process. Further, the common structural transformation was uncovered. 4 anti-hypertensive drugs, including irbesartan, valsartan, olmesartan, and losartan, were identified, along with 22 transformation products (TPs) of them. OH2 and H2O PMDs occurred most frequently and in 80.81 % of the parent-transformation product pairs, the intensity of the product was higher than parent in effluents, whose risk should be considered in future assessment activity. Together our results provide a macrography perspective on the transformation processes of ECs in WWTPs. In the future, selectively adopting wastewater treatment technology according to structures is conductive for eliminating recalcitrant ECs in WWTPs.
Collapse
Affiliation(s)
- Yuli Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Linchang Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Yunhao Ke
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Liye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Qingmiao Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China.
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
5
|
Hao P, Lv Z, Pan H, Zhang J, Wang L, Zhu Y, Basang W, Gao Y. Characterization and low-temperature biodegradation mechanism of 17β-estradiol-degrading bacterial strain Rhodococcus sp. RCBS9. ENVIRONMENTAL RESEARCH 2024; 240:117513. [PMID: 37890824 DOI: 10.1016/j.envres.2023.117513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Steroidal estrogens residues in the environment can be a serious hazard to humans and animals and has been listed as group 1 carcinogens by World Health Organization (WHO). Microbial degradation is one of the effective strategies for the removal of such contaminants. In this study, a low-temperature degrading bacterial strain (Rhodococcus sp. RCBS9) was isolated from the soil of a dairy farm for 17β-estradiol (E2) degradation. The strain RCBS9 exhibited an efficient degradation potential at low temperatures. To lean how different factors influence E2 degradation, we have found a major role of intracellular enzymes in E2 degradation. Genomic and metabolomic analyses have suggested potential degradation genes and four metabolic pathways. These findings provide valuable strain resources for the low temperature bioremediation of E2 contamination and insights into E2 biodegradation mechanism.
Collapse
Affiliation(s)
- Peng Hao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Zongshuo Lv
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Hanyu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Jingyi Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China
| | - Yunhang Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
6
|
Jin H, Nie Z, Niu H, Tan J, Huang S, Yan B, Cheng B, Yang H. Detoxification of typical nitrogenous heterocyclic compound from pharmaceutical wastewater by mixed microbial consortia. CHEMOSPHERE 2023:139000. [PMID: 37217008 DOI: 10.1016/j.chemosphere.2023.139000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/10/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Microbial consortia HY3 and JY3 with high degradation efficiency of 2-Diethylamino-4-hydroxy-6-methylpyrimidine (DHMP) were isolated from aerobic and parthenogenic ponds of DHMP-containing pharmaceutical wastewater, respectively. Both consortia were enriched and reached stable degradation performance with a DHMP concentration of 1500 mg L-1. The DHMP degradation efficiencies of HY3 and JY3 were 95.66% ± 0.24% and 92.16% ± 2.34% under the condition of shaking at 180 r·min-1 and the temperature of 30 °C for 72 h. And the removal efficiencies of chemical oxygen demand were 89.14% ± 4.78% and 80.30% ± 11.74%, respectively. High-throughput sequencing results indicated that three bacterial phyla of Proteobacteria, Bacteroidetes, and Actinobacteria were dominant in both HY3 and JY3, but their dominances varied. At the genus level, the richness of Unclassified Comamonadaceae (34.23%), Paracoccus (14.75%), and Brevundimonas (13.94%) ranked top three in HY3 whereas Unclassified Comamonadaceae (40.80%), Unclassified Burkholderiales (13.81%) and Delftia (13.11%) were dominant in JY3. The metabolites of DHMP degradation by HY3 and JY3 were analyzed in detail. Two pathways for cleavage of the nitrogenous heterocyclic ring were speculated, one of which was identified for the first time in this study.
Collapse
Affiliation(s)
- Hongyu Jin
- College of Resources and Environment, Hunan Agricultural University, 410128, Changsha, China; Yueyang Agricultural and Rural Development Group Co., Ltd., 414022, Yueyang, China
| | - Zimeng Nie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hongyu Niu
- College of Resources and Environment, Hunan Agricultural University, 410128, Changsha, China
| | - Ju Tan
- Changsha Environmental Monitoring Center Station, 410001, Changsha, China
| | - Shuie Huang
- Changsha Xinkaipu Water Purification Factory, 410002, Changsha, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, 410128, Changsha, China
| | - Bozhi Cheng
- Changsha Ecological Environment Bureau, 410128, Changsha, China
| | - Haijun Yang
- College of Resources and Environment, Hunan Agricultural University, 410128, Changsha, China.
| |
Collapse
|