1
|
Zou W, Ma W, Zhang S. Salt-free neutral dyeing of cotton fiber with monochlorotriazine type reactive dyes. Int J Biol Macromol 2024; 282:136992. [PMID: 39488326 DOI: 10.1016/j.ijbiomac.2024.136992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/11/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
In this paper, we present the modification of cotton with glycidyltrimethylammonium chloride (GTA), demonstrating its capability not only for salt-free dye adsorption but also for achieving fixation reactions with monochlorotriazine-type reactive dyes under neutral conditions. The results of adsorption kinetics and isotherm experiments indicate that the adsorption of reactive dyes by modified cotton is chemisorption. Color-stripping experiments conducted on modified cotton dyed with different dyes revealed that GTA-modified cotton underwent fixation reactions with monochlorotriazine-type reactive dyes under neutral conditions. The reaction sites of modified cotton with reactive dyes were determined by measuring the 1H NMR of the model reaction products. Mechanism investigation using Density Functional Theory (DFT) on the fixation reaction revealed that the hydroxyl groups on the modification agent chain exhibit a lower pKa value and carry more negative charge, resulting in a lower reaction barrier with monochlorotriazine-type reactive dyes. Our research findings demonstrate that GTA-modified cotton fiber enhance the reactivity of cotton, providing significant guidance for the development of novel modifiers.
Collapse
Affiliation(s)
- Wensheng Zou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China.
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
2
|
Liu L, Zhou Z, Gong G, Wu B, Todhanakasem T, Li J, Zhuang Y, He M. Economic co-production of cellulosic ethanol and microalgal biomass through efficient fixation of fermentation carbon dioxide. BIORESOURCE TECHNOLOGY 2024; 396:130420. [PMID: 38336213 DOI: 10.1016/j.biortech.2024.130420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
An integrated process for the co-production of cellulosic ethanol and microalgal biomass by fixing CO2 generated from bioethanol fermentation is proposed. Specifically, over one-fifth of the fermentative carbon was converted into high-purity CO2 during ethanol production. The optimal concentration of 4 % CO2 was identified for the growth and metabolism of Chlorella sp. BWY-1. A multiple short-term intermittent CO2 supply system was established to efficiently fix and recycle the waste CO2. Using this system, economical co-production of cellulosic ethanol by Zymomonas mobilis and microalgal biomass in biogas slurry wastewater was achieved, resulting in the production of ethanol at a rate of 0.4 g/L/h and a fixed fermentation CO2 of 3.1 g/L/d. Moreover, the amounts of algal biomass and chlorophyll a increased by over 50 % and two-fold, respectively. Through techno-economic analysis, the integrated process demonstrated its cost-effectiveness for cellulosic ethanol production. This study presents an innovative approach to a low-carbon circular bioeconomy.
Collapse
Affiliation(s)
- Linpei Liu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Zheng Zhou
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Guiping Gong
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Bo Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China.
| | - Tatsaporn Todhanakasem
- School of Food Industry, King Mongkut's Institute of Technology, Ladkrabang, Bangkok 10520, Thailand
| | - Jianting Li
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Yong Zhuang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Mingxiong He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| |
Collapse
|
3
|
Martins RA, Salgado EM, Gonçalves AL, Esteves AF, Pires JCM. Microalgae-Based Remediation of Real Textile Wastewater: Assessing Pollutant Removal and Biomass Valorisation. Bioengineering (Basel) 2024; 11:44. [PMID: 38247921 PMCID: PMC11154308 DOI: 10.3390/bioengineering11010044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
The textile industry generates highly contaminated wastewater. It severely threatens local ecosystems without proper treatment, significantly diminishing biodiversity near the discharge point. With rapid growth rates, microalgae offer an effective solution to mitigate the environmental impact of textile wastewater, and the generated biomass can be valorised. This study sets out to achieve two primary objectives: (i) to assess the removal of pollutants by Chlorella vulgaris from two distinct real textile wastewaters (without dilution) and (ii) to evaluate microalgal biomass composition for further valorisation (in a circular economy approach). Microalgae grew successfully with growth rates ranging from 0.234 ± 0.005 to 0.290 ± 0.003 d-1 and average productivities ranging from 78 ± 3 to 112.39 ± 0.07 mgDW L-1 d-1. All cultures demonstrated a significant reduction in nutrient concentrations for values below the legal limits for discharge, except for COD in effluent 2. Furthermore, the pigment concentration in the culture increased during textile effluent treatment, presenting a distinct advantage over conventional ones due to the economic value of produced biomass and pigments. This study underscores the promise of microalgae in textile wastewater treatment and provides valuable insights into their role in addressing the environmental challenges the textile industry poses.
Collapse
Affiliation(s)
- Rúben A. Martins
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.A.M.); (E.M.S.); (A.L.G.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Eva M. Salgado
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.A.M.); (E.M.S.); (A.L.G.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana L. Gonçalves
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.A.M.); (E.M.S.); (A.L.G.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- CITEVE—Technological Centre for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Ana F. Esteves
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.A.M.); (E.M.S.); (A.L.G.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José C. M. Pires
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.A.M.); (E.M.S.); (A.L.G.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|