1
|
Yan X, Peng P, Li X, Zhou X, Chen L, Zhao F. Unlocking anaerobic digestion potential via extracellular electron transfer by exogenous materials: Current status and perspectives. BIORESOURCE TECHNOLOGY 2025; 416:131734. [PMID: 39489312 DOI: 10.1016/j.biortech.2024.131734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The efficiency of energy transfer among microorganisms presents a substantial hurdle for the widespread implementation of anaerobic digestion techniques. Nonetheless, recent studies have demonstrated that enhancing the extracellular electron transfer (EET) can markedly enhance this efficiency. This review highlights recent advancements in EET for anaerobic digestion and examines the contribution of external additives to fostering enhanced efficiency within this context. Diverse mechanisms through which additives are employed to improve EET in anaerobic environments are delineated. Furthermore, specific strategies for effectively regulating EET are proposed, aiming to augment methane production from anaerobic digestion. This review thus offers a perspective on future research directions aimed at optimizing waste resources, enhancing methane production efficiency, and improving process predictability in anaerobic digestion.
Collapse
Affiliation(s)
- Xinyu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Pin Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xudong Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Lixiang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China.
| |
Collapse
|
2
|
Dong X, Dong A, Liu J, Qadir K, Xu T, Fan X, Liu H, Ji F, Xu W. Impact of Iron Oxide on Anaerobic Digestion of Frass in Biogas and Methanogenic Archaeal Communities' Analysis. BIOLOGY 2024; 13:536. [PMID: 39056727 PMCID: PMC11273746 DOI: 10.3390/biology13070536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
With the increasing prominence of the global energy problem, socioeconomic activities have been seriously affected. Biofuels, as a renewable source of energy, are of great significance in promoting sustainable development. In this study, batch anaerobic digestion (AD) of frass (swine manure after bioconversion by black soldier fly larvae) and co-digestion with corn straw after the addition of iron oxide (Fe3O4) nanoparticles is investigated, as well as the start-up period without inoculation. The biochemical methane potential of pure frass was obtained using blank 1 group and after the addition of various sizes of Fe3O4 nanoparticles for 30 days period, and similarly, the digestion of frass with straw (blank 2) and after the addition of various sizes of Fe3O4 nanoparticles for 61 days period. The results showed that the average gas production was 209.43 mL/gVS, 197.68 mL/gVS, 151.85 mL/gVS, and 238.15 mL/gVS for the blank, ~176 nm, ~164 nm, and ~184 nm, respectively. The average gas production of frass with straw (blank 2) was 261.64 mL/gVS, 259.62 mL/gVS, 241.51 mL/gVS, and 285.98 mL/gVS for blank 2, ~176 nm, ~164 nm, and ~184 nm, respectively. Meanwhile, the accumulated methane production of the ~184 nm group was 2312.98 mL and 10,952.96 mL, respectively, which significantly increased the biogas production compared to the other groups. The methanogenic results of the frass (30 days) indicated that Methanocorpusculum, Methanosarcina, and Methanomassiliicoccus are the important methanogenic species in the AD reactor, while the microbial diversity of the ~184 nm group was optimal, which may be the reason for the high gas production of ~184 nm.
Collapse
Affiliation(s)
- Xiaoying Dong
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; (K.Q.); (F.J.)
| | - Aoqi Dong
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China; (A.D.); (J.L.); (X.F.)
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Juhao Liu
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China; (A.D.); (J.L.); (X.F.)
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Kamran Qadir
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; (K.Q.); (F.J.)
| | - Tianping Xu
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xiya Fan
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China; (A.D.); (J.L.); (X.F.)
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Haiyan Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China;
| | - Fengyun Ji
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; (K.Q.); (F.J.)
| | - Weiping Xu
- School of Chemical Engineering, Ocean, and Life Sciences, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| |
Collapse
|
3
|
Chen C, Gong H, Wei Y, Xu T, Li J, Ding GC. Promoting agricultural waste-driven denitrification and nitrogen sequestration with nano-enabled strategy. BIORESOURCE TECHNOLOGY 2024; 401:130746. [PMID: 38679240 DOI: 10.1016/j.biortech.2024.130746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Nanotechnology and biotechnology offer promising avenues for bolstering food security through the facilitation of soil nitrogen (N) sequestration and the reduction of nitrate leaching. Nonetheless, a comprehensive and mechanistic evaluation of their effectiveness and safety remains unclear. In this study, a soil remediation strategy employing nano-Fe3O4 and straw in N-contaminated soil was developed to elucidate N retention mechanisms via diverse metagenomics techniques. The findings revealed that subsoil amended with straw, particularly in conjunction with nano-Fe3O4, significantly increased subsoil N content (53.2%) and decreased nitrate concentration (74.6%) in leachate. Furthermore, the enrichment of functional genes associated with N-cycling, sulfate, nitrate, and iron uptake, along with chemotaxis, and responses to environmental stimuli or microbial collaboration, effectively mitigates nitrate leaching while enhancing soil N sequestration. This study introduces a pioneering approach utilizing nanomaterials in soil remediation, thereby offering the potential for the cultivation of safe vegetables in high N input greenhouse agriculture.
Collapse
Affiliation(s)
- Chen Chen
- College of Resources and Environmental Science, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China; National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Haiqing Gong
- College of Resources and Environmental Science, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China
| | - Yuquan Wei
- College of Resources and Environmental Science, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Jiangsu Province 215128, China
| | - Ting Xu
- College of Resources and Environmental Science, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Jiangsu Province 215128, China
| | - Ji Li
- College of Resources and Environmental Science, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Jiangsu Province 215128, China
| | - Guo-Chun Ding
- College of Resources and Environmental Science, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Jiangsu Province 215128, China.
| |
Collapse
|
4
|
Zhang P, Shen D, Shao J, He X, Zeng J, Wu SL, Long Y, Wei W, Ni BJ. Green synthesis of Fe 3O 4@ceramsite from sludge improving anaerobic digestion performance of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121085. [PMID: 38728986 DOI: 10.1016/j.jenvman.2024.121085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Anaerobic digestion (AD) is a promising technique for waste management, which can achieve sludge stabilization and energy recovery. This study successfully prepared Fe3O4@ceramsite from WAS and applied it as an additive in sludge digestion, aiming to improve the conversion of organics to biomethane efficiency. Results showed that after adding the Fe3O4@ceramsite, the methane production was enhanced by 34.7% compared with the control group (88.0 ± 0.1 mL/g VS). Further mechanisms investigation revealed that Fe3O4@ceramsite enhanced digesta stability by strong buffering capacity, improved sludge conductivity, and promoted Fe (III) reduction. Moreover, Fe3O4@ceramsite has a larger surface area and better porous structure, which also facilitated AD performance. Microbial community analysis showed that some functional anaerobes related to AD such as Spirochaeta and Smithella were enriched with Fe3O4@ceramsite treatment. Potential syntrophic metabolisms between syntrophic bacteria (Syntrophomonas, associated with DIET) and methanogens were also detected in the Fe3O4@ceramsite treatment AD system.
Collapse
Affiliation(s)
- Pengqu Zhang
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Jinyang Shao
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Xiaoyu He
- Hangzhou Guotai Environmental Protection Technology Co., Ltd, China
| | - Jianjun Zeng
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Shu-Lin Wu
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China.
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
5
|
Wang Y, Mu L, Chen C, Xu F, Peng H, Song Y, Chen G. Preparation of iron oxide-modified digestate biochar and effect on anaerobic digestion of kitchen waste. BIORESOURCE TECHNOLOGY 2024; 398:130515. [PMID: 38437970 DOI: 10.1016/j.biortech.2024.130515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Two kinds of Fe2O3-modified digestate-derived biochar (BC) were prepared and their effects on anaerobic digestion (AD) of kitchen waste (40.0 g VS/L) were investigated, with BC and Fe2O3 addition used as a comparison. The results showed that Fe2O3-modified BC (Fe2O3-BC1 prepared by co-precipitation and Fe2O3-BC2 by impregnation) significantly increased methane yield (20.8 % and 16.4 %, respectively) and reduced volatile fatty acid concentration (35.6 % and 29.6 %, respectively). Microbial high-throughput analysis revealed that Fe2O3-modified BC selectively enriched Clostridium (47.3 %) and Methanosarcina (72.2 %), suggesting that direct interspecies electron transfer contributing to improved biogas production performance was established and enhanced. Correlation analysis indicated that biogas production performance was improved by the larger specific surface area (83.4 m2/g), pore volume (0.101 cm3/g), and iron content (97.4 g/Kg) of the BC. These results offer insights for enhancing the efficacy of AD processes using Fe2O3-modified BCs as additives.
Collapse
Affiliation(s)
- Yifan Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; China Energy Conservation (Beijing) Energy Conservation and Environment Protection Engineering Co., Ltd., Beijing 101318, China
| | - Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
| | - Chen Chen
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Fenglian Xu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; China Energy Conservation (Beijing) Energy Conservation and Environment Protection Engineering Co., Ltd., Beijing 101318, China
| | - Hao Peng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
6
|
Li Y, Yu S, Yang X, Feng Y, Dong L, Zhang Y, Feng L, Mazarji M, Pan J. From feedstock to digestion: Unraveling the impact of humic acid composition on anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166495. [PMID: 37611725 DOI: 10.1016/j.scitotenv.2023.166495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
In the anaerobic digestion (AD) process, the effects of humic acid (HA) derived from different feedstocks on AD are influenced by the variations in their structural composition and oxygen-containing functional groups. Thus, clarifying the structural differences of HA obtained from different feedstocks is crucial for understanding their impact on AD. In this study, the structure of five humic acids (HAs) derived from liquid digestate, food waste, silage corn straw, lignite and commercial HA, and their effects on AD were investigated. The study found that HA from food waste had more carboxyl groups, while straw-derived HA had more phenolic hydroxyl groups. Both types of HA had higher aromaticity and humification degree and showed significant inhibition effect on AD. HA from food waste had an average methanogenic inhibition rate of 43.5 % with 1 g/L HA added. In addition, commercial HA and HA derived from lignite had similar functional group types and aromaticity, with an average methanogenic inhibition rate of about 20 %. The study revealed that HAs with more carboxyl groups exhibited greater effectiveness in inhibiting AD, thereby confirming the influence of HA structures derived from different feedstocks on AD. In conclusion, this study provides valuable insights into the mechanism of HA effect on AD and offers guidance for future research focused on enhancing AD efficiency.
Collapse
Affiliation(s)
- Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Shasha Yu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Xingru Yang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Yijing Feng
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Liming Dong
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yi Zhang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Lu Feng
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, N-1431 Ås, Norway
| | - Mahmoud Mazarji
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|