1
|
Hamid I, Ahmadipour M, Ahmed MJ, Rizvi MA, Shalla AH, Khanday WA. Emerging antibiotic pollution and its remedy by waste based biochar adsorbents: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8643-8669. [PMID: 40085389 DOI: 10.1007/s11356-025-36253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
One of the pollutants of emerging concern, antibiotics, have been reported in soil, water, sediment, animal manure, food, and even drinking water. Their partially metabolized forms reach wastewater treatment plants (WWTPs) and natural waters wherein the development of antibiotic resistant bacteria (ARB) and dissemination of antibiotic resistance genes (ARGs) have been reported to occur. Antimicrobial resistance (AMR) is projected to cause 10 million deaths annually across the world by 2050 in case stringent measures are not taken. In this study, various methods of adsorptive removal of antibiotics with their critical analysis and emphasis on the application of biochar (BC) and modified biochar derived from waste biomass have been comprehensively reviewed. Also, the antibiotic toxicity, preparation of biomass waste-derived BC adsorbents from cost-effective precursors to ensure sustainability, the adsorption kinetics, isotherm models and thermodynamic parameters have been discussed. It was inferred that biochars are quite efficient in terms of antibiotic removal in water owing to their large surface area, excellent surface characteristics and functionality, facile synthesis and the potential to be regenerated, while being cost-effective and sustainable in nature. This review aims to guide the expansion of research in the aforementioned area of interest and to provide a progressive push towards the development of a circular economy.
Collapse
Affiliation(s)
- Insha Hamid
- PG Department of Chemistry, Sri Pratap College, Jammu & Kashmir, 190001, Srinagar, India
| | - Mohsen Ahmadipour
- Institute of Power Engineering, Universiti Tenaga Nasional, Serdang, Malaysia
| | - Muthanna J Ahmed
- Department of Chemical Engineering, College of Engineering, University of Baghdad, 10071, Baghdad, Iraq
| | - Masood Ahmad Rizvi
- Department of Chemistry, University of Kashmir, Jammu & Kashmir, 190006, Hazratbal, India
| | - Aabid H Shalla
- Soft Material Laboratory, Department of Chemistry, Islamic University of Science and Technology, Jammu & Kashmir, 192122, Awantipora, India
| | - Waheed Ahmad Khanday
- PG Department of Chemistry, Sri Pratap College, Jammu & Kashmir, 190001, Srinagar, India.
| |
Collapse
|
2
|
Zhang H, Zhang J, Ma C, Dai W, Ding Y, Pi K. Mechanism of adsorption and targeted degradation of antimicrobial micropollutant sulfamethoxazole in aquatic environments. CHEMOSPHERE 2024; 365:143302. [PMID: 39255856 DOI: 10.1016/j.chemosphere.2024.143302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
FHWSB as an integrated absorptive catalyst, based on Walnut shell biochar (WSB) via hydrochloric acid modification and ferrous chloride impregnation, was prepared, reacted with H2O2 to generate active free radicals •OH and •O2-, which oxidized and degraded about 80% of micro-pollutant sulfamethoxazole (SMX) from water, effectively resolving micro-pollutants' removal being inefficient because of high toxicity, persistence, and bioaccumulation in existed methods. It was clarified the specific degradation pathways and mechanisms of SMX by FHWSB synergistic H2O2 via characterization and analysis assisted DFT calculations. Furthermore, it was found that the toxicity of a series of intermediates produced by SMX degraded continued to decline, consistent with its direction of degradation via toxicological analysis. The work provides a simple and feasible strategy for the effective removal of antibiotic micro-pollutants in aquatic environments.
Collapse
Affiliation(s)
- Huiqin Zhang
- Hubei Key Laboratory of Environmental Geotechnology and Ecological Remediation for Lake & River, Hubei University of Technology, Wuhan, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, China.
| | - Juan Zhang
- Hubei Key Laboratory of Environmental Geotechnology and Ecological Remediation for Lake & River, Hubei University of Technology, Wuhan, China
| | - Chao Ma
- Hubei Key Laboratory of Environmental Geotechnology and Ecological Remediation for Lake & River, Hubei University of Technology, Wuhan, China
| | - Weiwen Dai
- Hubei Key Laboratory of Environmental Geotechnology and Ecological Remediation for Lake & River, Hubei University of Technology, Wuhan, China
| | - Yucheng Ding
- Hubei Key Laboratory of Environmental Geotechnology and Ecological Remediation for Lake & River, Hubei University of Technology, Wuhan, China
| | - Kewu Pi
- Hubei Key Laboratory of Environmental Geotechnology and Ecological Remediation for Lake & River, Hubei University of Technology, Wuhan, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, China
| |
Collapse
|
3
|
Deng Z, Zhang W, Sun P, Zhao H, Cao X, Li G, Xiong S, Liu Q. Donor polarization engineering of conjugated microporous polymers to boost exciton dissociation for photocatalytic degradation of tetracycline. CHEMOSPHERE 2024; 364:143236. [PMID: 39222690 DOI: 10.1016/j.chemosphere.2024.143236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/14/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The misuse and inevitable release of antibiotics can cause significant harm to both human health and the environment, and the use of polymeric semiconductors for photodegradation of antibiotics in aqueous environments is one of the most effective strategies to alleviate the current dilemma. Nevertheless, the inherently high exciton binding energy (Eb) and low photogenerated carrier transfer efficiency for most photocatalysts results in unsatisfactory photodegradation performance. Hence, this work proposes a donor polarization strategy to regulate the exciton dissociation of conjugated microporous polymers (CMPs) by minimizing their Eb. Results exhibited that the introduction of the strong donor unit 3,4-ethylenedioxythiophene (EDOT) not only reduces the Eb and effectively promotes exciton dissociation, but also broadens the visible light absorption of CMP. Among them, EdtTz-CMP with the lowest Eb (99 meV) delivered an efficiency of 94.6% in photocatalytic degradation of tetracycline (TC) with in 90 min, significantly higher than those of its analogues. This work provides a viable approach to design CMPs by tuning the intrinsic dipole of the donor for efficient environmental purification.
Collapse
Affiliation(s)
- Zhaozhang Deng
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Weijie Zhang
- College of Materials and Chemical Engineering, Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Penghao Sun
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Hongwei Zhao
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xinxiu Cao
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Gen Li
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Shaohui Xiong
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Qingquan Liu
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
4
|
Dung NT, Khiem TC, Thao NP, Phu NA, Son NT, Dat TQ, Phuong NT, Trang TT, Nhi BD, Thuy NT, Lin KYA, Huy NN. Enhancing catalytic activity of CuCoFe-layered double oxide towards peroxymonosulfate activation by coupling with biochar derived from durian peel for antibiotic degradation: The role of C=O in biochar and underlying mechanism of built-in electric field. CHEMOSPHERE 2024; 361:142452. [PMID: 38810804 DOI: 10.1016/j.chemosphere.2024.142452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
CuCoFe-LDO/BCD was successfully synthesized from CuCoFe-LDH and biochar derived from durian shell (BCD). Ciprofloxacin (CFX) degraded more than 95% mainly by O2•- and 1O2 in CuCoFe-LDO/BCD(2/1)/PMS system within 10 min with a rate constant of 0.255 min-1, which was 14.35 and 2.66 times higher than those in BCD/PMS and CuCoFe-LDO/PMS systems, respectively. The catalytic system exhibited good performance over a wide pH range (3-9) and high degradation efficiency of other antibiotics. Built-in electric field (BIEF) driven by large difference in the work function/Fermi level ratio between CuCoFe-LDO and BCD accelerated continuous electron transfer from CuCoFe-LDO to BCD to result in two different microenvironments with opposite charges at the interface, which enhanced PMS adsorption and activation via different directions. As a non-radical, 1O2 was mainly generated via PMS activation by C=O in BCD. The presence of C=O in BCD resulted in an increase in atomic charge of C in C=O and redistributed the charge density of other C atoms. As a result, strong adsorption of PMS at C atom in C=O and other C with a high positive charge was favorable for 1O2 generation, whereas an enhanced adsorption of PMS at negatively charged C accounted for the generation of •OH and SO4•-. After adsorption, electrons in C of BCD became deficient and were fulfilled with those transferred from CuCoFe-LDO driven by BIEF, which ensured the high catalytic activity of CuCoFe-LDO/BCD. O2•-, on the other hand, was generated via several pathways that involved in the transformation of •OH and SO4•- originated from PMS activation by the transition of metal species in CuCoFe-LDO and negatively charged C in BCD. This study proposed a new idea of fabricating a low-cost metal-LDH and biomass-derived catalyst with a strong synergistic effect induced by BIEF for enhancing PMS activation and antibiotic degradation.
Collapse
Affiliation(s)
- Nguyen Trung Dung
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Ta Cong Khiem
- Innovation and Development Center of Sustainable Agriculture and Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Nguyen Phuong Thao
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Nguyen Anh Phu
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Nguyen Truong Son
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Tran Quang Dat
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Nguyen Thu Phuong
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Cau Giay, Hanoi, Viet Nam
| | - Tran Thi Trang
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Cau Giay District, Hanoi, Viet Nam
| | - Bui Dinh Nhi
- Faculty of Chemical and Environmental Technology, Viet Tri University of Industry, 9 Tien Son St., Viet Tri City, Phu Tho Province, Viet Nam
| | - Nguyen Thi Thuy
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Kun-Yi Adrew Lin
- Innovation and Development Center of Sustainable Agriculture and Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Nguyen Nhat Huy
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
5
|
Zhang F, Zhang C, Zhang K, Wu L, Han D. One-Pot Preparation of Layered Double Hydroxide-Engineered Boric Acid Root and Application in Wastewater. Molecules 2024; 29:3204. [PMID: 38999156 PMCID: PMC11243716 DOI: 10.3390/molecules29133204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Heavy metals and organic pollutants are prevalent in water bodies, causing great damage to the environment and human beings. Hence, it is urgent to develop a kind of adsorbent with good performance. Anion interlacing layered double hydroxides (LDHs) are a promising adsorbent for the sustainable removal of heavy metal ions and dyes from wastewater. Using aluminum chloride, zinc chloride and ammonium pentaborate tetrahydrate (NH4B5O8 · 4H2O, BA) as raw materials, the LDHs complex (BA-LDHs) of B5O8- intercalation was prepared by one-step hydrothermal method. The BA-LDHs samples were characterized by a X-ray powder diffractometer (XRD), scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR) and the Brunauer-Emmett-Teller (BET) method. The results showed that B5O8- was successfully intercalated. Adsorption experimental results suggested that BA-LDHs possess a maximum adsorption capacity of 18.7, 57.5, 70.2, and 3.12 mg·g-1 for Cd(II), Cu(II), Cr(VI) and Methylene blue (MB) at Cs = 2 g·L-1, respectively. The adsorption experiment conforms to the Langmuir and Freundlich adsorption models, and the kinetic adsorption data are well fitted by the pseudo-second-order adsorption kinetic equation. The as-prepared BA-LDHs have potential application prospects in the removal of heavy metals and dyes in wastewater. More importantly, they also provide a strategy for preparing selective adsorbents.
Collapse
Affiliation(s)
- Fengrong Zhang
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | | | - Kaixuan Zhang
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Lishun Wu
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Dandan Han
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| |
Collapse
|
6
|
Zhao Z, Li P, Zhang M, Feng W, Tang H, Zhang Z. Unlocking the potential of Chinese herbal medicine residue-derived biochar as an efficient adsorbent for high-performance tetracycline removal. ENVIRONMENTAL RESEARCH 2024; 252:118425. [PMID: 38325789 DOI: 10.1016/j.envres.2024.118425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
This study employed hydrothermal carbonization (HTC) in conjunction with ZnCl2 activation and pyrolysis to produce biochar from one traditional Chinese medicine astragali radix (AR) residue. The resultant biochar was evaluated as a sustainable adsorbent for tetracycline (TC) elimination from water. The adsorption performance of TC on two micropore-rich AR biochars, AR@ZnCl2 (1370 m2 g-1) and HAR@ZnCl2 (1896 m2 g-1), was comprehensively evaluated using adsorption isotherms, kinetics, and thermodynamics. By virtue of pore diffusion, π-π interaction, electrostatic attraction, and hydrogen bonding, the prepared AR biochar showed exceptional adsorption properties for TC. Notably, the maximum adsorption capacity (930.3 mg g-1) of TC on HAR@ZnCl2 can be achieved when the adsorbent dosage is 0.5 g L-1 and C0 is 500 mg L-1 at 323 K. The TC adsorption on HAR@ZnCl2 took place spontaneously. Furthermore, the impact of competitive ions behavior is insignificant when coexisting ion concentrations fall within the 10-100 mg L-1 range. Additionally, the produced biochar illustrated good economic benefits, with a payback of 701 $ t-1. More importantly, even after ten cycles, HAR@ZnCl2 still presented great TC removal efficiency (above 77%), suggesting a good application prosperity. In summary, the effectiveness and sustainability of AR biochar, a biowaste-derived product, were demonstrated in its ability to remove antibiotics from water, showing great potential in wastewater treatment application.
Collapse
Affiliation(s)
- Ziheng Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pengwei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Miaomiao Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Hanxiao Tang
- College of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Li P, Zhao Z, Zhang M, Su H, Zhao T, Feng W, Zhang Z. Exploring the Potential of Biochar Derived from Chinese Herbal Medicine Residue for Efficient Removal of Norfloxacin. Molecules 2024; 29:2063. [PMID: 38731553 PMCID: PMC11085230 DOI: 10.3390/molecules29092063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
One-step carbonization was explored to prepare biochar using the residue of a traditional Chinese herbal medicine, Atropa belladonna L. (ABL), as the raw material. The resulting biochar, known as ABLB4, was evaluated for its potential as a sustainable material for norfloxacin (NOR) adsorption in water. Subsequently, a comprehensive analysis of adsorption isotherms, kinetics, and thermodynamics was conducted through batch adsorption experiments. The maximum calculated NOR adsorption capacity was 252.0 mg/g at 298 K, and the spontaneous and exothermic adsorption of NOR on ABLB4 could be better suited to a pseudo-first-order kinetic model and Langmuir model. The adsorption process observed is influenced by pore diffusion, π-π interaction, electrostatic interaction, and hydrogen bonding between ABLB4 and NOR molecules. Moreover, the utilization of response surface modeling (RSM) facilitated the optimization of the removal efficiency of NOR, yielding a maximum removal rate of 97.4% at a temperature of 304.8 K, an initial concentration of 67.1 mg/L, and a pH of 7.4. Furthermore, the biochar demonstrated favorable economic advantages, with a payback of 852.5 USD/t. More importantly, even after undergoing five cycles, ABLB4 exhibited a consistently high NOR removal rate, indicating its significant potential for application in NOR adsorption.
Collapse
Affiliation(s)
- Pengwei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Ziheng Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Miaomiao Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Hang Su
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Ting Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Li D, Sun L, Yang L, Liu J, Shi L, Zhuo L, Ye T, Wang S. Adsorption behavior and mechanism of modified Pinus massoniana pollen microcarriers for extremely efficient and rapid adsorption of cationic methylene blue dye. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133308. [PMID: 38134687 DOI: 10.1016/j.jhazmat.2023.133308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Herein, a novel biosorbent was successfully fabricated through a two-step process employing Pinus massoniana pollen as raw material. The efficacy of this biosorbent in eliminating methylene blue (MB), a typical organic cationic dye, from highly concentrated industrial wastewater was investigated. The results demonstrated that by adjusting the wettability of pollen microcarriers, it is possible to significantly increase their adsorption capacity for cationic dyes, resulting in a remarkable 25-fold improvement. The modified Pinus massoniana pollen microcarriers (MPPMC) exhibited an optimal adsorption capacity (585 mg/g) under specific conditions and a rapid equilibrium (97.6% in 5 min, uptake 487.8 mg/g) even at room temperature, showing excellent performance in removing MB efficiently and quickly. It is worth noting that the modified microcarriers could be regenerated via a simple pH-controlled adsorption-desorption cycle, maintaining their superior efficiency (> 99%) even after undergoing five cycles, indicating their excellent reproducibility. The MB adsorption process on MPPMC obeyed the pseudo-second-order kinetic model and followed the Langmuir model. Through the introduced modifications, the substantial deprotonation of carboxyl groups notably augmented electrostatic and hydrogen bonding interactions between MPPMC and MB. Overall, this study offers a sustainable, eco-friendly biological adsorbent, and the MPPMC exhibit the considerable potential for efficient and rapid removal of organic cationic dyes in wastewater.
Collapse
Affiliation(s)
- Dan Li
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; Shenyang Junhong Medical Technology Co., Ltd., 59 Changjiang Street, Shenyang 110030, China
| | - Liwen Sun
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Li Yang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jun Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Lingjuan Shi
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Le Zhuo
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Tiantian Ye
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Shujun Wang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
9
|
Liu X, Tang Y, Wang X, Sarwar MT, Zhao X, Liao J, Zhang J, Yang H. Efficient Adsorbent Derived from Phytolith-Rich Ore for Removal of Tetracycline in Wastewater. ACS OMEGA 2024; 9:8287-8296. [PMID: 38405464 PMCID: PMC10883018 DOI: 10.1021/acsomega.3c09049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
In recent decades, the tetracycline (TC) concentration in aquatic ecosystems has gradually increased, leading to water pollution problems. Various mineral adsorbents for the removal of tetracyclines have garnered considerable attention. However, efficient adsorbents suitable for use in a wide pH range environment have rarely been reported. Herein, a phytolith-rich adsorbent (PRADS) was prepared by a simple one-step alkali-activated pyrolysis treatment using phytolith as a raw material for effectively removing TC. PRADS, benefiting from its porous structure, which consists of acid- and alkali-resistant, fast-adsorbing macroporous silica and mesoporous carbon, is highly desirable for efficient TC removal from wastewater. The results indicate that PRADS exhibited excellent adsorption performance and stability for TC over a wide pH range of 2.0-12.0 under the coexistence of competing ions, which could be attributed to the fact that PRADS has a porous structure and contains abundant oxygen-containing functional groups and a large number of bonding sites. The adsorption mechanisms of PRADS for TC were mainly attributed to pore filling, hydrogen bonding, π-π electron-donor-acceptor, and electrostatic interactions. This work could offer a novel preparation strategy for the effective adsorption of pollutants by new functionalized phytolith adsorbents.
Collapse
Affiliation(s)
- Xi Liu
- Hunan
Key Laboratory of Mineral Materials and Application, School of Minerals
Processing and Bioengineering, Central South
University, Changsha 410083, China
- Department
of Natural Resources of Jiangxi Province, Jiangxi Province Natural Resources Interests and Reserve Security
Center, Nanchang 330025, China
| | - Yili Tang
- Hunan
Key Laboratory of Mineral Materials and Application, School of Minerals
Processing and Bioengineering, Central South
University, Changsha 410083, China
| | - Xianguang Wang
- Department
of Natural Resources of Jiangxi Province, Jiangxi Mineral Resources Guarantee Service Center, Nanchang 330025, China
| | - Muhammad Tariq Sarwar
- Engineering
Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory
of Advanced Mineral Materials, China University
of Geosciences, Wuhan 430074, China
- Faculty of
Materials Science and Chemistry, China University
of Geosciences, Wuhan 430074, China
| | - Xiaoguang Zhao
- Hunan
Key Laboratory of Mineral Materials and Application, School of Minerals
Processing and Bioengineering, Central South
University, Changsha 410083, China
| | - Juan Liao
- Hunan
Key Laboratory of Mineral Materials and Application, School of Minerals
Processing and Bioengineering, Central South
University, Changsha 410083, China
| | - Jun Zhang
- Hunan
Key Laboratory of Mineral Materials and Application, School of Minerals
Processing and Bioengineering, Central South
University, Changsha 410083, China
| | - Huaming Yang
- Hunan
Key Laboratory of Mineral Materials and Application, School of Minerals
Processing and Bioengineering, Central South
University, Changsha 410083, China
- Engineering
Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory
of Advanced Mineral Materials, China University
of Geosciences, Wuhan 430074, China
- Faculty of
Materials Science and Chemistry, China University
of Geosciences, Wuhan 430074, China
| |
Collapse
|
10
|
Li A, Ye C, Jiang Y, Deng H. Enhanced removal performance of magnesium-modified biochar for cadmium in wastewaters: Role of active functional groups, processes, and mechanisms. BIORESOURCE TECHNOLOGY 2023; 386:129515. [PMID: 37468011 DOI: 10.1016/j.biortech.2023.129515] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
In this study, a series of biochar products with different active functional groups were developed by one-pot coprecipitation method, including magnesium-modified biochar (MgBC) and functional group-grafted MgBC (Cys@MgBC, Try@MgBC, and Glu@MgBC), for effective adsorption of cadmium (Cd(II)) from wastewaters. These biochars exhibited excellent removal performance for Cd(II), particularly Cys@MgBC, whose maximum Cd(II) adsorption capacity reached 223.7 mg g-1. The highly active and weakly crystalline Mg could adsorb Cd(II) through precipitation and ion exchange, which was further promoted by the introduced functional groups through complexation and precipitation. After 120 d of natural process, the immobilization efficiency of Cd(II) by Cys@MgBC, Try@MgBC, and Glu@MgBC was still maintained at 98.7%, 95.2%, and 82.7% respectively. This study proposes and clarifies the complexation mechanism of functional group-grafted Mg-modified biochar for heavy metals, providing new insights into the practical application of these biochars.
Collapse
Affiliation(s)
- Anyu Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Chenghui Ye
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Yanhong Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Hua Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
11
|
Wang S, Wu L, Wang L, Zhou J, Ma H, Chen D. Hydrothermal Pretreatment of KOH for the Preparation of PAC and Its Adsorption on TC. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4966. [PMID: 37512241 PMCID: PMC10381690 DOI: 10.3390/ma16144966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The environment has been heavily contaminated with tetracycline (TC) due to its excessive use; however, activated carbon possessing well-developed pores can effectively adsorb TC. This study synthesized pinecone-derived activated carbon (PAC) with high specific surface area (1744.659 cm2/g, 1688.427 cm2/g) and high adsorption properties (840.62 mg/g, 827.33 mg/g) via hydrothermal pretreatment methods utilizing pinecones as precursors. The results showed that PAC treated with 6% KOH solution had excellent adsorption properties. It is found that the adsorption process accords with the PSO model, and a large amount of C=C in PAC provides the carrier for π-πEDA interaction. The results of characterization and the isothermal model show that TC plays a key role in the adsorption process of PAC. It is concluded that the adsorption process of TC on PAC prepared by hydrothermal pretreatment is mainly pore filling and π-πEDA interaction, which makes it a promising adsorbent for TC adsorption.
Collapse
Affiliation(s)
- Shouqi Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linkai Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Liangcai Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianbin Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huanhuan Ma
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dengyu Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|