1
|
Mullai P, Sambavi SM, Vishali S, Dharmalingam K, Sutha S, Dinesh S, Anandhi T, Al Noman MA, Bilyaminu AM, James A. An integrated review on the role of different biocatalysts, process parameters, bioreactor technologies and data-driven predictive models for upgrading biogas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125508. [PMID: 40327925 DOI: 10.1016/j.jenvman.2025.125508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
As energy consumption and waste generation from human activities continue to rise, the technology of anaerobic digestion (AD), which converts waste into bioenergy, has gained popularity. Biogas produced from AD commonly contains 60 % CH4, 40 % CO2 and a minor fraction of impurities. Currently, several anaerobic reactors have been designed to upgrade the biogas with biomethane content above 90 %. This review summarizes the current trends in the biological upgradation of biogas from a bio-circular economy perspective to achieve sustainable energy goals. Examples of applications reporting the latest advancements in treating industrial effluents using high-rate anaerobic reactors have been mentioned. The integrated anaerobic-aerobic hybrid reactor offers a solution to the limitations of traditional methods in treating diverse effluents. A special focus on biological upgradation techniques such as in-situ, ex-situ, and hybrid mechanisms have been briefed. The key advantage of hybrid upgradation is its ability to address the pH rise during in-situ process. Additionally, the applications of artificial neural networks and optimization to upgrade biogas production have been discussed. The review concludes with future research directives with emphasis on the economic viability of the approaches.
Collapse
Affiliation(s)
- P Mullai
- Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - S M Sambavi
- Department of Chemical and Biological Engineering, Energy Engineering with Industrial Management, University of Sheffield, Sheffield, United Kingdom.
| | - S Vishali
- Department of Chemical Engineering, SRM Institute of Science and Engineering, Kattankulathur, 603 203, Tamil Nadu, India.
| | - K Dharmalingam
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, Telangana, India.
| | - S Sutha
- Department of Instrumentation Engineering, Madras Institute of Technology, Anna University, Chromepet, Chennai, 600044, Tamil Nadu, India.
| | - S Dinesh
- Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - T Anandhi
- Department of Electronics and Instrumentation Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - Md Abdullah Al Noman
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - Abubakar M Bilyaminu
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - Anina James
- J & K Pocket, Dilshad Garden, Delhi, 110095, India.
| |
Collapse
|
2
|
Zhu M, Song L, Li W, Qin Y, Li YY. Hydraulic retention times as key parameter governing biomethanation of brewery spent grain and system stability in long-term continuously-feeding anaerobic digestion. BIORESOURCE TECHNOLOGY 2025; 425:132331. [PMID: 40037434 DOI: 10.1016/j.biortech.2025.132331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/01/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
The feasibility of converting brewery spent grain (BSG) to biomethane in a mesophilic continuously-stirred tank reactor was demonstrated at various hydraulic retention times (HRTs) of 100, 60, 30, and 20 d. As HRT decreased to 30 d, the biogas and CH4 production rates increased to 1.40 ± 0.05 and 0.89 ± 0.03 L/L/d, respectively. However, a shorter HRT of 20 d increased the instability of the system according to the ratio of total volatile fatty acid and total alkalinity (> 0.35). The modified first-order kinetic equation accurately predicted biogas and CH4 production rates and organics degradation efficiencies. As HRT decreased from 100 to 30 d, the ratio of the conversion of organics based on chemical oxygen demand to CH4 decreased from 80.8 ± 1.8 % to 40.8 ± 1.8 %. The results of the energy balance demonstrated the economic feasibility of anaerobic digestion (AD) of BSG. These finding provide valuable insights for industrial-scale AD of BSG.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Liuying Song
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Weiquan Li
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
3
|
Aka RJN, Hossain MM, Nasir A, Zhan Y, Zhang X, Zhu J, Wang ZW, Wu S. Enhanced nutrient recovery from anaerobically digested poultry wastewater through struvite precipitation by organic acid pre-treatment and seeding in a bubble column electrolytic reactor. WATER RESEARCH 2024; 252:121239. [PMID: 38335753 DOI: 10.1016/j.watres.2024.121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Limited mineralization of organic phosphorus to phosphate during the anaerobic digestion process poses a significant challenge in the development of cost-effective nutrient recovery strategies from anaerobically digested poultry wastewater (ADPW). This study investigated the influence of organic acids on phosphorus solubilization from ADPW, followed by its recycling in the form of struvite using a bubble column electrolytic reactor (BCER) without adding chemicals. The impact of seeding on the efficiency of PO43- and NH3-N recovery as well as the size distribution of recovered precipitates from the acid pre-treated ADPW was also evaluated. Pre-treatment of the ADPW with oxalic acid achieved complete solubilization of phosphorus, reaching ∼100% extraction efficiency at pH 2.5. The maximum removal efficiency of phosphate and ammonia-nitrogen from the ADPW were 88.9% and 90.1%, respectively, while the addition of 5 and 10 g/L struvite seed to the BCER increased PO43- removal efficiency by 9.6% and 11.5%, respectively. The value of the kinetic rate constant, k, increased from 0.0176 min-1 (unseeded) to 0.0198 min-1, 0.0307 min-1, and 0.0375 min-1 with the seed loading rate of 2, 5, and 10 g/L, respectively. Concurrently, the average particle size rose from 75.3 μm (unseeded) to 82.1 μm, 125.7 μm, and 148.9 μm, respectively. Results from XRD, FTIR, EDS, and dissolved chemical analysis revealed that the solid product obtained from the recovery process was a multi-nutrient fertilizer consisting of 94.7% struvite with negligible levels of heavy metals.
Collapse
Affiliation(s)
| | - Md Mokter Hossain
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844
| | - Alia Nasir
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844
| | - Yuanhang Zhan
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Xueyao Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061
| | - Jun Zhu
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Zhi-Wu Wang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061
| | - Sarah Wu
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844.
| |
Collapse
|
4
|
Sitthikitpanya N, Ponuansri C, Jomnonkhaow U, Wongfaed N, Reungsang A. Unlocking the potential of sugarcane leaf waste for sustainable methane production: Insights from microbial pre-hydrolysis and reactor optimization. Heliyon 2024; 10:e25787. [PMID: 38356542 PMCID: PMC10865077 DOI: 10.1016/j.heliyon.2024.e25787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Sugarcane leaf waste, a byproduct of the growing global sugar industry, challenges agricultural waste management. This study explores its potential for methane production via anaerobic digestion. A microbial pre-hydrolysis, using lignocellulose-degrading bacteria, enhanced soluble chemical oxygen demand at an optimal initial substrate concentration of 40 g-volatile solid/L. Comparative analysis with untreated and bioaugmented leaves revealed the pre-hydrolyzed leaves achieved the highest methane production rate (MPR) at 14.0 ± 0.5 mL-CH4/L·d, surpassing others by 1.47 and 1.67 times. Two continuous stirred tank reactors were employed to assess the optimal hydraulic retention time (HRT). Results showed a stable methane production with an HRT of 25 days, yielding high MPRs: 88.70 ± 0.63 mL-CH4/L·d from pre-hydrolyzed sugarcane leaves and 82.57 ± 1.22 mL-CH4/L·d from microbial consortium-augmented leaves. A 25-day HRT fosters high microbial diversity with Bacteroidota, Firmicutes, Chloroflexi, and Verrucomicrobiota dominance, indicating favorable conditions. Conversely, a 20-day HRT results in lower diversity due to unfavorable factors like low pH during organic overloading, leading to increased concentrations of volatile fatty acids and lactic acid, with Firmicutes as the predominant phylum. This study highlights sugarcane leaf waste's potential as a valuable resource for sustainable methane production.
Collapse
Affiliation(s)
- Napapat Sitthikitpanya
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaweewan Ponuansri
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Umarin Jomnonkhaow
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nantharat Wongfaed
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| |
Collapse
|