1
|
Yan K, Li M, Ma X, Chen S, Ding B, Huo J, Zhai R, Sha Y, Xu Z, Jin M. Harnessing native nitrogen in lignocellulosic biomass for cellulosic ethanol production by ancestral xylose isomerase-engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2025; 432:132662. [PMID: 40360031 DOI: 10.1016/j.biortech.2025.132662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 05/03/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
Efficient xylose-utilizing Saccharomyces cerevisiae, straightforward pretreatment, elimination of detoxification steps, reduced cellulase dosage, and cost-effective nutrients are critical for the commercialization of lignocellulosic ethanol production. In this study, three highly efficient xylose-utilizing S. cerevisiae, which were capable of consuming 40 g/L xylose within 14 h and consuming a mixture of 80 g/L glucose and 40 g/L xylose within 18 h, were developed by integrating artificial ancestral xylose isomerases into diploid S. cerevisiae genome, followed by laboratory evolution and colony screening. Thereafter, a practical lignocellulosic ethanol process was established, which incorporated DLC(sa) pretreatment (densifying lignocellulosic biomass using sulfuric acid as the reagent), a low cellulase dosage of 14.81 FPU per gram of cellulose, and the elimination of washing or detoxification steps, as well as the need for additional nitrogen sources. Using this approach, 54.8 g/L ethanol was produced from 30 wt% hydrolysate prepared from unwashed corn stover. Further analysis revealed that S. cerevisiae utilized the native nitrogen sources present in the hydrolysate for cell growth and metabolism. In summary, this study offers a practical framework and valuable insights for advancing the commercial production of lignocellulosic ethanol.
Collapse
Affiliation(s)
- Kang Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Muzi Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xingwang Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Boning Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Juncheng Huo
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Jofre FM, Prado CA, Shibukawa VP, Rodrigues BG, Sarangi PK, Chandel AK. Critical analysis of process parameters towards smart bioreactors development in biorefinery for biorenewables production. Int J Biol Macromol 2025; 305:140957. [PMID: 39947535 DOI: 10.1016/j.ijbiomac.2025.140957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
The development of sustainable biotechnological processes is important for advancements in production of renewable chemicals, biofuels, and materials. A significant challenge is handling high biomass total solids (TS) loading, which is significant to enhance the cost-effectiveness and efficiency of biorefineries. Further, advancements in biomass pretreatment methods, such as hydrodynamic cavitation, that are employed to disrupt the complex structure of biomass, facilitating enzymatic hydrolysis and improving overall process yields, have shown promising results. Efficient pretreatment, novel enzyme evolution and hydrolysis using high TS concentration coupled with process intensification approaches i.e. simultaneous saccharification and co-fermentation (SSCF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP) could be revolutionary in the biomass refineries. There are some key factors influencing reactor performance, such as biomass characteristics, mass transfer, enzyme characteristics, rheology, and heat transfer. These factors are critical in overcoming the challenges associated with high TS loading, including increased viscosity, microorganism selection and reduced mixing efficiency. This review highlights such critical factors when dealing with high biomass loading, by presenting strategies and reactor configurations to improve the scalability and economic viability of lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Fanny Machado Jofre
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, 12602-810 Lorena, Brazil.
| | - Carina Aline Prado
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, 12602-810 Lorena, Brazil
| | - Vinícius Pereira Shibukawa
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, 12602-810 Lorena, Brazil
| | - Bruna Green Rodrigues
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, 12602-810 Lorena, Brazil
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal, Manipur 795004, India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, 12602-810 Lorena, Brazil.
| |
Collapse
|
3
|
He Y, Xing Y, Shao L, Ling Z, Yang G, Xu F, Wang C. Enhancing enzymatic conversion of castor stalk through dual-functional ethanolamine pretreatment. Int J Biol Macromol 2024; 279:135293. [PMID: 39233160 DOI: 10.1016/j.ijbiomac.2024.135293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Castor stalk from hemp plants is an attractive lignocellulosic feedstock for biomass refining valorization due to its similar chemical composition to hardwoods. In this study, the castor stalk fibers were pretreated with efficient dual-functional ethanolamine to achieve delignification and swelling of the cellulosic fibers, followed by cellulase enzymatic digestion for biomass conversion. Experimental results showed that ethanolamine pretreatment at 160 °C for 1 h effectively removed 69.20 % of lignin and 43.18 % of hemicellulose. In addition to efficient delignification and removal of hemicellulose, the study also revealed that supramolecular structure of cellulose was another major factor affecting enzymatic hydrolysis performance. The lowered crystallinity (60-70 %) and swelled crystal sizes (2.95-3.04 nm) promoted enzymatic hydrolysis efficiency during the heterogeneous reaction process. Under optimal conditions (160 °C, 1 h; enzyme loading: 15 FPU/g substrate), promoted yields of 100 % glucose and over 90 % xylose were achieved, which were significantly higher than those obtained from untreated castor stalk. These findings highlighted the effectiveness of the dual-functional ethanolamine pretreatment strategy for efficient bioconversion of lignocellulosic feedstocks. Overall, this study provides valuable insights into the development of new strategies for the efficient utilization of biomass resources, which is essential for the sustainable development of our society.
Collapse
Affiliation(s)
- Yulu He
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Yike Xing
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Lupeng Shao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China.
| | - Zhe Ling
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Feng Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Chao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; Shandong Chenming Paper Holdings Co., Ltd., Weifang 262700, PR China.
| |
Collapse
|
4
|
Jiao M, Wang K, Liu X, Tao Y, Du J, Lv Y, Lu J, Wang H. Bioconversion of spray corn husks into L-lactic acid with liquid hot water pretreatment. Int J Biol Macromol 2024; 258:129154. [PMID: 38171443 DOI: 10.1016/j.ijbiomac.2023.129154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Agricultural by-products like rice husk, bran, and spray corn husks, often utilized as feed, are considered less desirable. This study aims to enhance the utilization rate of these materials by subjecting then to liquid hot water (LHW) pretreatment, followed by enzymatic hydrolysis to produce fermentable sugars. We investigated the production of L-lactic acid using two methods: simultaneous saccharification fermentation (SSF) and separate hydrolysis fermentation (SHF), following varying intensities of LHW pretreatment. The results showed that the optimal enzymatic hydrolysis efficiency was achieved from spray corn husks under the pretreatment conditions of 155 °C and 15 min. SHF was generally more effective than SSF. The glucose L-lactic acid conversion rate in SHF using spray corn husks can reach more than 90 %. Overall, this work proposed a novel, environmental-friendly strategy for efficient and for L- lactic acid production from spray corn husks.
Collapse
Affiliation(s)
- Meizhen Jiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Kaihua Wang
- Liaoning Vocational College of Light Industry, Dalian 116100, China.
| | - Xiaoyuan Liu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Vocational College of Light Industry, Dalian 116100, China
| | - Yanna Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Liu P, Zhao Y, Guo H, Chang JS, Lee DJ. Enzymolysis kinetics of corn straw by impeded Michaelis model and Box-Behnken design. ENVIRONMENTAL RESEARCH 2024; 242:117658. [PMID: 37979929 DOI: 10.1016/j.envres.2023.117658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Enzymatic hydrolysis is an essential step in the lignocellulosic biorefining process. In this paper, Box-Behnken was used to optimize the enzymatic hydrolysis process of corn stalk, and the promotion effect of three typical surfactants on the enzymatic hydrolysis process was investigated. The experimental results showed that the total reducing sugar yield reached 67.6% under the best-predicted conditions. When the concentration of Tween 80 is 0.1%, it could be increased to 80.2%. In addition, the Impeded Michaels Model (IMM) is introduced in this study to describe the enzymatic hydrolysis process of corn stalks. Finally, the initial contact coefficient between the enzyme and cellulose (Kobs,0) and the gradual loss coefficient of enzyme activity (ki) caused by reaction obstruction were obtained by fitting data, which successfully verified the rationality of the model.
Collapse
Affiliation(s)
- Peng Liu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ying Zhao
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin, 150040, China; College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering & Materials Science, Yuan Ze University, Chung-li, 32003, Taiwan.
| |
Collapse
|
6
|
Cai D, Wen J, Wu Y, Su C, Bi H, Wang Y, Jiang Y, Qin P, Tan T, Zhang C. Surfactant-assisted dilute ethylenediamine fractionation of corn stover for technical lignin valorization and biobutanol production. BIORESOURCE TECHNOLOGY 2024; 394:130231. [PMID: 38142909 DOI: 10.1016/j.biortech.2023.130231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
In this study, a surfactant-assisted diluted ethylenediamine (EDA) fractionation process was investigated for co-generation of technical lignin and biobutanol from corn stover. The results showed that the addition of PEG 8000 significantly enhanced cellulose recovery (88.9 %) and lignin removal (68.9 %) in the solid fraction. Moreover, the pulp achieved 86.5 % glucose yield and 82.6 % xylose yield in enzymatic hydrolysis. Structural characterization confirmed that the fractionation process promoted the preservation of active β-O-4 bonds (35.8/100R) in isolated lignin and functionalized the lignin through structural modification using EDA and surfactant grafting. The enzymatic hydrolysate of the pulps yielded a sugar solution for acetone-butanol-ethanol (ABE) fermentation, resulting in an ABE concentration of 15.4 g/L and an overall yield of 137.2 g/Kg of dried corn stalk. Thus, the surfactant-assisted diluted EDA fractionation has the potential to enhance the overall economic feasibility of second-generation biofuels production within the framework of biorefinery.
Collapse
Affiliation(s)
- Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jieyi Wen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yilu Wu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changsheng Su
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Haoran Bi
- Collage of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yankun Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yongjie Jiang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- Collage of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China; Collage of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China; Collage of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|