1
|
Gao M, Sun S, Shao C, Qiu Q, Kong C, Qiu L. Engineered stable partial nitrification/endogenous partial denitrification-anammox process for enhanced nitrogen removal from low carbon-to-nitrogen ratio wastewater. BIORESOURCE TECHNOLOGY 2025; 428:132466. [PMID: 40169103 DOI: 10.1016/j.biortech.2025.132466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Addressing the intractable challenges of nitrite instability and slow start-up in anammox for low carbon-to-nitrogen (C/N) ratio wastewater treatment, a one-stage partial nitrification/endogenous partial denitrification-anammox (PN/EPD-A) process in a sequencing batch biofilm reactor was proposed. By synergistically coupling PN and EPD, self-sustained nitrite supply for anammox was achieved. Concurrently, a layered biofilm structure, engineered through tailored aeration and carrier addition, facilitated the rapid enrichment of anammox bacteria. The results demonstrated exceptional performance, achieving a total nitrogen removal efficiency of 83.3 %, with anammox consistently contributing 75.8 % of the nitrogen removed. Microbial community analysis further indicated the stable coexistence of anammox bacteria, ammonia-oxidizing bacteria, and glycogen-accumulating organisms, with their relative abundance reaching 1.36 %, 2.19 % and 9.80 %, respectively. These findings unveiled a robust and efficient strategy to overcome the limitations of anammox technology in low C/N wastewater treatment, paving the way for its broader application in nitrogen removal.
Collapse
Affiliation(s)
- Mingchang Gao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Shaofang Sun
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China; Research Center for Functional Material & Water Purification Engineering of Shandong Province, Jinan 250022, China.
| | - Changtao Shao
- Shandong Industrial Ceramics Research and Design Institute, Zibo 255031, China
| | - Qi Qiu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China; Research Center for Functional Material & Water Purification Engineering of Shandong Province, Jinan 250022, China
| | - Congcong Kong
- Weifang Municiple Public Utility Service Center, Weifang 261000, China
| | - Liping Qiu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China; Research Center for Functional Material & Water Purification Engineering of Shandong Province, Jinan 250022, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| |
Collapse
|
2
|
Hou Z, Dong W, Li Y, Chen S, Liu H, Han Q, Zhao Z, Liu J, Zhang L, Wang H, Peng Y. Achieving efficient anammox contribution and the enrichment of functional bacteria in partial denitrification/anammox system: Performance, microbial evolution and correlation analysis. BIORESOURCE TECHNOLOGY 2025; 416:131792. [PMID: 39522616 DOI: 10.1016/j.biortech.2024.131792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The primary challenge of applying partial denitrification/anammox (PD/A) to municipal wastewater treatment lied in the enrichment of functional bacteria with a considerable autotrophic nitrogen removal performance. The results showed influent NO3--N: NH4+-N, reaction time and temperature would influence anammox nitrogen removal contribution. 15N isotopic tracing technology further revealed the average anammox contribution rate was up to 94.8 %. Extending reaction time was an effective measure to improve simultaneously PD and anammox activity. Microbial community indicated partial denitrifying bacteria (Bacillus) and anammox bacteria (Candidatus Brocadia) were enriched with abundance of 27.27 % and 7.09 % at NO3--N: NH4+-N of 1:1. The correlation analysis showed that NO3--N: NH4+-N ratio played the positive role for Bacillus enrichment, and low temperature was favorable to the enrichment of Thauera and Candidatus Jettenia. Overall, this study demonstrated the reasonable operational strategy would strengthen anammox contribution and facilitate enrichment of functional bacteria.
Collapse
Affiliation(s)
- Zilong Hou
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yanchen Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shuo Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Huaguang Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qi Han
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zilong Zhao
- Low-Carbon and Ecological Environmental Protection Research Center, Chongqing Academy of Science and Technology, Chongqing 401120, China
| | - Jie Liu
- Shenzhen Wanmu Water Services Co., Shenzhen 518000, China
| | - Liang Zhang
- Shenzhen Wanmu Water Services Co., Shenzhen 518000, China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Guo Y, Gao J, Zhang Y, Xie T, Wang Q, An J. Will the removal of carbon, nitrogen and mixed disinfectants occur simultaneously: The key role of heterotrophic nitrification-aerobic denitrification strain. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136431. [PMID: 39522204 DOI: 10.1016/j.jhazmat.2024.136431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The capacity and mechanism of heterotrophic nitrification-aerobic denitrification (HNAD) strain (H1) to remove carbon, nitrogen, disinfectants chloroxylenol (PCMX) and benzethonium chloride (BEC) were investigated in this study. PCMX was removed via metabolism and chemical oxygen demand co-metabolism process. BEC was eliminated through bacterial adsorption, which greatly inhibited the removal of other pollutants. Carbon source optimization tests revealed that glucose was the optimal carbon source for co-removal of pollutants under mixed disinfectants circumstances (PCMX + BEC). Comparing the groups without (G1) and with disinfectants (G2), the content of extracellular polymeric substances was higher, and hydrophobicity was enhanced under the hazardous conditions of G2. All the nitrogen metabolism functional genes in G2 were up-regulated, and the electron transport system activity was also improved. At the same time, G2 had lower reactive oxygen species content, which reduced the probability of resistance genes dissemination, but the abundance of most quantified resistance genes was elevated in G2. Toxicity assessment assays found a dramatic reduction in the virulence of G2's effluent compared with the mixed disinfectants. The results confirmed that H1 strain could be used to treat the disinfectant-containing wastewater, which may aid in the application of HNAD process.
Collapse
Affiliation(s)
- Yi Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Tian Xie
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qian Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiawen An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Liu J, Wang R, Qiu S, Peng Y, Peng Y. Feasibility of double nitrite supply through partial nitrification and partial denitrification driven by sludge fermentation. BIORESOURCE TECHNOLOGY 2024; 414:131580. [PMID: 39384049 DOI: 10.1016/j.biortech.2024.131580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Challenges in obtaining stable nitrite have impeded the use of anammox in municipal wastewater treatment. This study explored the feasibility of using sludge fermentation products as carbon source and selective nitrification inhibitor to supply nitrite via partial nitrification (PN) and partial denitrification (PD). PD was initiated within 15 days, achieving nitrite transformation rate of over 90 % with a carbon/nitrogen ratio of 3 and a reaction time of 0.75 h. The dominant genus, Romboutsia, increased in relative abundance from 4.1 to 35 %. Organic acids in sludge fermentation products, like acetate (200 mg/L) and propionate (400 mg/L), selectively suppressed nitrite-oxidizing bacteria (NOB) more than ammonia-oxidizing bacteria (AOB), leading to PN. Combining anaerobic exposure with sludge fermentation products addition achieved PN with over 80.0 % nitrite accumulation. AOB increased tenfold in the long term, significantly outpacing NOB growth. This strategy simplifies difficulty of anammox application and shows broad application potential in municipal wastewater treatment.
Collapse
Affiliation(s)
- Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shengjie Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yi Peng
- Beijing Xintong Bishui Reclaimed Water Co.Ltd, Beijing 101149, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Li B, Liu C, Bai J, Huang Y, Su R, Wei Y, Ma B. Strategy to mitigate substrate inhibition in wastewater treatment systems. Nat Commun 2024; 15:7920. [PMID: 39256375 PMCID: PMC11387818 DOI: 10.1038/s41467-024-52364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Global urbanization requires more stable and sustainable wastewater treatment to reduce the burden on the water environment. To address the problem of substrate inhibition of microorganisms during wastewater treatment, which leads to unstable wastewater discharge, this study proposes an approach to enhance the tolerance of bacterial community by artificially setting up a non-lethal high substrate environment. And the feasibility of this approach was explored by taking the inhibition of anammox process by nitrite as an example. It was shown that the non-lethal high substrate environment could enhance the nitrite tolerance of anammox bacterial community, as the specific anammox activity increasing up to 24.71 times at high nitrite concentrations. Moreover, the system composed of anammox bacterial community with high nitrite tolerance also showed greater resistance (two-fold) in response to nitrite shock. The antifragility of the system was enhanced without affecting the operation of the main reactor, and the non-lethal high nitrite environment changed the dominant anammox genera to Candidatus Jettenia. This approach to enhance tolerance of bacterial community in a non-lethal high substrate environment not only allows the anammox system to operate stably, but also promises to be a potential strategy for achieving stable biological wastewater treatment processes to comply with standards.
Collapse
Affiliation(s)
- Beiying Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Conghe Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jingjing Bai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yikun Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Run Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yan Wei
- State Key Laboratory of Marine Resources Utilization in the South China Sea, Hainan University, Haikou, 570228, China
| | - Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
6
|
Zhen J, Wang ZB, Ni BJ, Ismail S, El-Baz A, Cui Z, Ni SQ. Synergistic Integration of Anammox and Endogenous Denitrification Processes for the Simultaneous Carbon, Nitrogen, and Phosphorus Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10632-10643. [PMID: 38817146 DOI: 10.1021/acs.est.4c00558] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The feasibility of a synergistic endogenous partial denitrification-phosphorus removal coupled anammox (SEPD-PR/A) system was investigated in a modified anaerobic baffled reactor (mABR) for synchronous carbon, nitrogen, and phosphorus removal. The mABR comprising four identical compartments (i.e., C1-C4) was inoculated with precultured denitrifying glycogen-accumulating organisms (DGAOs), denitrifying polyphosphate-accumulating organisms, and anammox bacteria. After 136 days of operation, the chemical oxygen demand (COD), total nitrogen, and phosphorus removal efficiencies reached 88.6 ± 1.0, 97.2 ± 1.5, and 89.1 ± 4.2%, respectively. Network-based analysis revealed that the biofilmed community demonstrated stable nutrient removal performance under oligotrophic conditions in C4. The metagenome-assembled genomes (MAGs) such as MAG106, MAG127, MAG52, and MAG37 annotated as denitrifying phosphorus-accumulating organisms (DPAOs) and MAG146 as a DGAO were dominated in C1 and C2 and contributed to 89.2% of COD consumption. MAG54 and MAG16 annotated as Candidatus_Brocadia (total relative abundance of 16.5% in C3 and 4.3% in C4) were responsible for 74.4% of the total nitrogen removal through the anammox-mediated pathway. Functional gene analysis based on metagenomic sequencing confirmed that different compartments of the mABR were capable of performing distinct functions with specific advantageous microbial groups, facilitating targeted nutrient removal. Additionally, under oligotrophic conditions, the activity of the anammox bacteria-related genes of hzs was higher compared to that of hdh. Thus, an innovative method for the treatment of low-strength municipal and nitrate-containing wastewaters without aeration was presented, mediated by an anammox process with less land area and excellent quality effluent.
Collapse
Affiliation(s)
- Jianyuan Zhen
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zhi-Bin Wang
- School of Life Sciences, Shandong University, Jinan 250100, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Sherif Ismail
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Amro El-Baz
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
7
|
Wu L, Zhang Y, Yin J, Luo A, Tian Y, Liu Y, Xu J, Peng Y. Achieving advanced nitrogen removal from mature landfill leachate in continuous flow system involving partial nitrification-anammox and denitrification. BIORESOURCE TECHNOLOGY 2024; 399:130553. [PMID: 38460559 DOI: 10.1016/j.biortech.2024.130553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Considering the challenges associated with nitrogen removal from mature landfill leachate, a novel combined continuous-flow process integrating denitrification and partial nitrification-Anammox (PN/A) was developed using an internal circulation (IC) system and a biological aerated filter (BAF) biofilm reactor (IBBR). In this study, IBBR successfully operated for 343 days, and when influent NH4+-N concentration of mature landfill leachate reached 1258.1 mg/L, an impressive total nitrogen removal efficiency (TNRE) of 93.3 % was achieved, along with a nitrogen removal rate (NRR) of 1.13 kg N/(m3·d). The analysis of the microbial community revealed that Candidatus Kuenenia, the dominant genus responsible for anammox, accounted for 1.7 % (day 265). Additionally, Nitrosomonas, Thauera and Truepera were identified as key contributors to the efficient removal of nitrogen from mature landfill. As a novel nitrogen removal strategy, the practical application of the IBBR system offers novel perspectives on addressing mature landfill leachate.
Collapse
Affiliation(s)
- Lina Wu
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yulin Zhang
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jian Yin
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Anteng Luo
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yinghao Tian
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yufan Liu
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jiayuan Xu
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Centre of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
8
|
Luo J, Wu Y, Fu H, Fu M, Liu M, Guo H, Jin L, Wang S. Shift in microorganism and functional gene abundance during completely autotrophic nitrogen removal over nitrite (CANON) process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121009. [PMID: 38718600 DOI: 10.1016/j.jenvman.2024.121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Nitrification-denitrification process has failed to meet wastewater treatment standards. The completely autotrophic nitrite removal (CANON) process has a huge advantage in the field of low carbon/nitrogen wastewater nitrogen removal. However, slow start-up and system instability limit its applications. In this study, the time of the start-up CANON process was reduced by using bio-rope as loading materials. The establishing of graded dissolved oxygen improved the stability of the CANON process and enhanced the stratification effect between functional microorganisms. Microbial community structure and the abundance of nitrogen removal functional genes are also analyzed. The results showed that the CANON process was initiated within 75 days in the complete absence of anaerobic ammonium oxidizing bacteria (AnAOB) inoculation. The ammonium and nitrogen removal efficiencies of CANON process reached to 94.45% and 80.76% respectively. The results also showed that the relative abundance of nitrogen removal bacterial in the biofilm gradually increases with the dissolved oxygen content in the solution decreases. In contrast, the relative abundance of ammonia oxidizing bacteria was positively correlated with the dissolved oxygen content in the solution. The relative abundance of g__Candidatus_Brocadia in biofilm was 15.56%, and while g__Nitrosomonas was just 0.6613%. Metagenomic analysis showed that g__Candidatus_Brocadia also contributes 66.37% to the partial-nitrification functional gene Hao (K10535). This study presented a new idea for the cooperation between partial-nitrification and anammox, which improved the nitrogen removal system stability.
Collapse
Affiliation(s)
- Jiajun Luo
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | - Yicheng Wu
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | - Haiyan Fu
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China.
| | - Muxing Fu
- Xiamen Zhongrenhemei Biotechnology Co., Xiamen, 361024, China
| | - Mian Liu
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | - Huibin Guo
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | - Lei Jin
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | | |
Collapse
|
9
|
Wang R, Liu J, Zhang Q, Li X, Wang S, Peng Y. Robustness of the anammox process at low temperatures and low dissolved oxygen for low C/N municipal wastewater treatment. WATER RESEARCH 2024; 252:121209. [PMID: 38309058 DOI: 10.1016/j.watres.2024.121209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/25/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Low water temperatures and ammonium concentrations pose challenges for anammox applications in the treatment of low C/N municipal wastewater. In this study, a 10 L-water bath sequencing batch reactor combing biofilm and suspended sludge was designed for low C/N municipal wastewater treatment. The nitrogen removal performance via partial nitrification anammox-(endogenous) denitrification anammox process was investigated with anaerobic-aerobic-anoxic mode at low temperatures and dissolved oxygen (DO). The results showed that with the decrease of temperature from 30 to 15℃, the influent and effluent nitrogen concentrations and nitrogen removal efficiencies were 73.7 ± 6.5 mg/L, 7.8 ± 2.8 mg/L, and 89.4 %, respectively, with aerobic hydraulic retention time of only 6 h and DO concentration of 0.2-0.5 mg/L. Among that, the stable anammox process compensated for the inhibitory effects of the low temperatures on the nitrification and denitrification processes. Notably, from 30 to 15℃, the anammox activity and relative abundance of the dominant Brocadia genus were increased from 39.7 to 45.5 mgN/gVSS/d and 7.3 to 12.0 %, respectively; the single gene expression level of the biofilm increased 9.0 times. The anammox bacteria showed a good adaptation to temperatures reduction. However, nitrogen removal by anammox was not improved by increasing DO (≥ 4 mg/L) at 8-4℃. Overall, the results of this study demonstrate the feasibility of the mainstream anammox process at low temperatures.
Collapse
Affiliation(s)
- Rui Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
10
|
Wang Z, Liang H, Yan Y, Li X, Zhang Q, Peng Y. Stimulating extracellular polymeric substances production in integrated fixed-film activated sludge reactor for advanced nitrogen removal from mature landfill leachate via one-stage double anammox. BIORESOURCE TECHNOLOGY 2024; 391:129968. [PMID: 37925083 DOI: 10.1016/j.biortech.2023.129968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Introducing carbon sources to achieve nitrogen removal from mature landfill leachate not only increases the costs and carbon emissions but also inhibits the activity of autotrophic bacteria. Thus, this study constructed a double anammox system that combines partial nitrification-anammox (PNA) and endogenous partial denitrification-anammox (EPDA) within an integrated fixed-film activated sludge (IFAS) reactor. In this system, PNA primarily contributes to nitrogen removal pathways, achieving a nitrite accumulation rate of 98.23%. The production of extracellular polymer substances (EPS) in the IFAS reactor is stimulated by introducing co-fermentation liquid. Through the utilization of EPS, the system effectively achieves EPDA with the nitrite transformation rate of 97.20%. Under the intermittent aeration operation strategy, EPDA combined with PNA and anammox in the oxic and anoxic stages enhanced the nitrogen removal efficiency of the system to 99.70 ± 0.12%. The functional genus Candidatus kuenenia became enriched in biofilm sludge, while Thauera and Nitrosomonas predominated in floc sludge.
Collapse
Affiliation(s)
- Zhaozhi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Haoran Liang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ying Yan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
11
|
Chen J, Zhang X, Zhou L, Zhu Z, Wu Z, Zhang K, Wang Y, Ju T, Ji X, Jin D, Wu P, Zhang X. Metagenomics insights into high-rate nitrogen removal from municipal wastewater by integrated nitrification, partial denitrification and Anammox at an extremely short hydraulic retention time. BIORESOURCE TECHNOLOGY 2023; 387:129606. [PMID: 37572889 DOI: 10.1016/j.biortech.2023.129606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
To achieve high-rate nitrogen removal in municipal wastewater treatment through anaerobic ammonia oxidation (Anammox), the nitrification, partial denitrification, and Anammox processes were integrated by a step-feed strategy. An exceptional nitrogen removal load of 0.224 kg N/(m3·d) was achieved by gradient-reducing the hydraulic retention time (HRT) to 5 h. Metagenomic analysis demonstrated that Nitrosospira could express all genes encoding ammonia oxidation under low nitrogen and dissolved oxygen conditions (less than 0.5 mg/L), enabling complete nitrification. With the short of HRT, the relative abundance of Thauera increased from 2.8 % to 6.4 %. Frequent substrate exchanges at such extremely short HRT facilitated enhanced synergistic interactions among Nitrosospira, Thauera, and Candidatus Brocadia. These findings provide a comprehensive understanding of the utilization of Anammox combined processes for high-speed nitrogen removal in municipal wastewater treatment and the microbial interactions involved.
Collapse
Affiliation(s)
- Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Ting Ju
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xu Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Da Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road,Suzhou 215009, China.
| | - Xingxing Zhang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
12
|
Zhang G, Li W, Wang S, Li D, Zhang D, Lv L. Performance and mechanism of glycerol-driven denitrifying phosphorus removal from low organic matter sewage. BIORESOURCE TECHNOLOGY 2023; 391:129942. [PMID: 39492533 DOI: 10.1016/j.biortech.2023.129942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
The performance and mechanism of the glycerol-driven denitrifying phosphorus removal (DPR) process were investigated in low organic matter wastewater treatment using the modified anaerobic-anoxic-oxic (MAAO) system. The results revealed that denitrifying bacteria preferentially utilized glycerol, reducing nitrate interference on anaerobic phosphate release. Fermentation bacteria converted excess glycerol into available carbon sources, which were utilized by denitrifying phosphorus-accumulating organisms (DPAOs). Optimize glycerol dosage (calculated in chemical oxygen demand) could be estimated based on 6 times the effluent NO3--N of the anoxic zone. As glycerol dosage increased, the relative abundance of fermentation bacteria surged from 8.2% to 17.7%, subsequently boosting the DPR rate from 34.6% to 77.2%. Notably, denitrifying glycogen-accumulating organisms (DGAOs) decreased from 0.5% to 0.2% but remained instrumental in nitrogen removal. The collaborative actions of fermentation bacteria, DPAOs, and DGAOs were vital in upholding the stability of nutrient removal in the glycerol-driven DPR process.
Collapse
Affiliation(s)
- Guanglin Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shuncai Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Donghui Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin 150080, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|