1
|
Pang H, An L, Ding J, Wei Q, Luo J, He J, Tian Y, Liu Y, Lu J. Recyclable cation exchange resin-driven fermentation of waste activated sludge in sequential batch-parallel pattern: long-term resin/regenerant recycle stability and triple driving mechanisms. WATER RESEARCH 2025; 281:123654. [PMID: 40273601 DOI: 10.1016/j.watres.2025.123654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/06/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
Anaerobic acidogenic fermentation has been posited as a preferable technology for waste activated sludge management, whereas the inefficient hydrolysis, inadequate metabolism and disordered microbiota still existed as three fermentability limitations. The existing solutions addressed single limitation while consuming substantial chemicals/energy, thereby restraining technological dissemination. Innovatively, the recyclable cation exchange resin (CER) is a promising approach for synchronously overcoming these fermentability limitations and reducing chemicals/energy costs from sludge-native metal removal perspective; however, it has been rarely reported. This study pioneered a recyclable CER-driven sludge fermentation in continuous CER and regenerant reuse scene, taking comprehensive insights into long-term performance and multiple mechanisms. The CER induced speciation conversion and stepwise removal of structural metals from sludge, especially organic-binding and residual Ca&Mg, which played triple driving contributions: (1) breaking metal-bridging sites and hydrogen bonds disentangled protein molecules for raising electronegative repulsion and flocculation energy barrier, causing synergic extracellular and intracellular hydrolysis (up to 30.05 %); (2) liberating endogenous redox mediators from metal-complexations for assisting electron shuttle and extracellular respiration, which metabolic electron transfer activity by 1.58 times; (3) triggering "bacteria screening" through sensitive methanogen inhibition and tolerant acidogens growth towards maximum acidogenic eco-functions. Such fermentability breakthroughs greatly promoted short-chain fatty acids (superior carbon sources) accumulation by average 2.52 folds while declining sludge solid by 55.87 %. The NaCl regeneration thoroughly restored CER active sites and eluted pollutant blockages, with negligible capability loss ≤ 3.53 % in 18-cycle operations, which stabilized acidogenic performances during 72-day fermentation (RSD ≤ 7.88 %). The fermentative products presented as high-quality carbon sources with abundant carbon and absent nitrogen, owing to CER-mediated NH4+ exchange. Innovative batch-parallel operation was established in engineering strategy, offering 409.49 CNY/ton SS income. The findings provided mechanism framework linking sludge fermentability with native metal functions.
Collapse
Affiliation(s)
- Heliang Pang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - Lei An
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jiangbo Ding
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Wei
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jingyang Luo
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - Yu Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jinsuo Lu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
2
|
Han X, Liu J, Zhu Z, Lin Y, Peng Y. Strengthening the enrichment of anaerobic ammonia oxidizing bacteria in biofilms through sludge concentration control. ENVIRONMENTAL RESEARCH 2024; 262:119784. [PMID: 39142456 DOI: 10.1016/j.envres.2024.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Controlling sludge concentration is an effective means to achieve PN. In this article, the reactor used domestic sewage as raw water and promoted the high enrichment of anammox bacteria by controlling the MLVSS of flocs to 1000-1500 mg/L and increasing the concentration of filler sludge. The measures to reduce the concentration of flocculent sludge increased the proliferation rate of the biofilm and provided sufficient substrate for AnAOB. After 102 days of operation, the abundance of Candidatus Brocadia increased from 0.43% during inoculation to 23.56% in phase VI. The ability of the microbial community to utilize energy metabolism and produce ATP was significantly improved, and the appropriate distribution of anammox bacteria and nitrifying, denitrifying bacteria in the ecological niche led to its high enrichment. In summary, this study proposes a strategy to promote the high enrichment of anammox bacteria in mainstream domestic sewage without adding any chemicals.
Collapse
Affiliation(s)
- Xueke Han
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhuo Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yangang Lin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
3
|
Sun Y, Zuo Y, Shao Y, Wang L, Jiang LM, Hu J, Zhou C, Lu X, Huang S, Zhou Z. Carbon footprint analysis of wastewater treatment processes coupled with sludge in situ reduction. WATER RESEARCH X 2024; 24:100243. [PMID: 39188329 PMCID: PMC11345402 DOI: 10.1016/j.wroa.2024.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
The goal of this study was to assess the impacts or benefits of sludge in situ reduction (SIR) within wastewater treatment processes with relation to global warming potential in wastewater treatment plants, with a comprehensive consideration of wastewater and sludge treatment. The anaerobic side-stream reactor (ASSR) and the sludge process reduction activated sludge (SPRAS), two typical SIR technologies, were used to compare the carbon footprint analysis results with the conventional anaerobic - anoxic - oxic (AAO) process. Compared to the AAO, the ASSR with a typical sludge reduction efficiency (SRE) of 30 % increased greenhouse gas (GHG) emissions by 1.1 - 1.7 %, while the SPRAS with a SRE of 74 % reduced GHG emissions by 12.3 - 17.6 %. Electricity consumption (0.025 - 0.027 kg CO2-eq/m3), CO2 emissions (0.016 - 0.059 kg CO2-eq/m3), and N2O emissions (0.009 - 0.023 kg CO2-eq/m3) for the removal of secondary substrates released from sludge decay in the SIR processes were the major contributor to the increased GHG emissions from the wastewater treatment system. By lowering sludge production and the organic matter content in the sludge, the SIR processes significantly decreased the carbon footprints associated with sludge treatment and disposal. The threshold SREs of the ASSR for GHG reduction were 27.7 % and 34.6 % for the advanced dewatering - sanitary landfill and conventional dewatering - drying-incinerating routes, respectively. Overall, the SPRAS process could be considered as a cost-effective and sustainable low-carbon SIR technology for wastewater treatment.
Collapse
Affiliation(s)
- Yiyue Sun
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yi Zuo
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yanjun Shao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lihua Wang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiaming Hu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Chuanting Zhou
- Shanghai Urban Construction Design and Research Institute, Shanghai 200125, China
| | - Xi Lu
- Shanghai Investigation Design and Research Institute Co., Ltd, Shanghai 200335, China
| | - Song Huang
- Shanghai Investigation Design and Research Institute Co., Ltd, Shanghai 200335, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
4
|
Jiang Q, Feng L, Luo J, Wu Y, Dong H, Mustafa AM, Su Y, Zhao Y, Chen Y. Simultaneous volatile fatty acids promotion and antibiotic resistance genes reduction in fluoranthene-induced sludge alkaline fermentation: Regulation of microbial consortia and cell functions. BIORESOURCE TECHNOLOGY 2024; 395:130367. [PMID: 38266788 DOI: 10.1016/j.biortech.2024.130367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
The impact and mechanism of fluoranthene (Flr), a typical polycyclic aromatic hydrocarbon highly detected in sludge, on alkaline fermentation for volatile fatty acids (VFAs) recovery and antibiotic resistance genes (ARGs) transfer were studied. The results demonstrated that VFAs production increased from 2189 to 4272 mg COD/L with a simultaneous reduction of ARGs with Flr. The hydrolytic enzymes and genes related to glucose and amino acid metabolism were provoked. Also, Flr benefited for the enrichment of hydrolytic-acidifying consortia (i.e., Parabacteroides and Alkalibaculum) while reduced VFAs consumers (i.e., Rubrivivax) and ARGs potential hosts (i.e., Rubrivivax and Pseudomonas). Metagenomic analysis indicated that the genes related to cell wall synthesis, biofilm formation and substrate transporters to maintain high VFAs-producer activities were upregulated. Moreover, cell functions of efflux pump and Type IV secretion system were suppressed to inhibit ARGs proliferation. This study provided intrinsic mechanisms of Flr-induced VFAs promotion and ARGs reduction during alkaline fermentation.
Collapse
Affiliation(s)
- Qingyang Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, School of Medicine, Tongji Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Yu Su
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yuxiao Zhao
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Biomass Gasification Technology, Jinan 250014, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Liu S, Wu J, Hu Z, Jiang M. Changes in microbial community during hydrolyzed sludge reduction. Front Microbiol 2023; 14:1239218. [PMID: 37720154 PMCID: PMC10502510 DOI: 10.3389/fmicb.2023.1239218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
In this study, the effects of different enzymes (lysozyme, α-amylase and neutral protease) on sludge hydrolysis efficiency and microbial community in sequencing batch reactor (SBR) were introduced. The results showed that the hydrolysis efficiencies of the three enzymes were 48.5, 22.5 and 31%, respectively, compared with the accumulated sludge discharge of the blank control group. However, it has varying degrees of impact on the effluent quality, and the denitrification and phosphorus removal effect of the system deteriorates. The lysozyme that achieves the optimal sludge hydrolysis effect of 48.5% has the greatest impact on the chemical oxygen demand (COD), total nitrogen (TN), and nitrate nitrogen (NO3--N) of the effluent. The sludge samples of the control group and the groups supplemented with different enzyme preparations were subjected to high-throughput sequencing. It was found that the number of OTUs (Operational Taxonomic Units) of the samples was lysozyme > α-amylase > blank control > neutral protease. Moreover, the abundance grade curve of the sludge samples supplemented with lysozyme and α-amylase was smoother, and the community richness and diversity were improved by lysozyme and α-amylase. The species diversity of the sludge supplemented with lysozyme and neutral protease was great, and the community succession was obvious. The introduction of enzymes did not change the main microbial communities of the sludge, which were mainly Proteobacteria, Actinobacteria and Bacteroidetes. The effects of three enzyme preparations on sludge reduction and microbial diversity during pilot operation were analyzed, the gap in microbial research was filled, which provided theoretical value for the practical operation of enzymatic sludge reduction.
Collapse
Affiliation(s)
- Shaomin Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Anhui University of Science and Technology), Huainan, China
| | - Jiating Wu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Anhui University of Science and Technology), Huainan, China
| | - Ziyan Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Anhui University of Science and Technology), Huainan, China
| | - Mengyu Jiang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Anhui University of Science and Technology), Huainan, China
| |
Collapse
|