1
|
Zheng X, Wang Y, Jiang Y, Mao W, Li M, Guan Y. Enhanced and sustainable advanced nitrogen removal in mixotrophic systems using pyrite and solid carbon source. ENVIRONMENTAL RESEARCH 2025; 275:121379. [PMID: 40081648 DOI: 10.1016/j.envres.2025.121379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Utilizing widespread minerals/solid wastes as electron donors for denitrification is conducive to sustainable wastewater treatment. The current denitrification technologies based on single pyrite/solid carbon sources have problems of limited removal efficiency or unstable carbon release. In this study, two continuous biofilters, pyrite-corncob mixotrophic system (RPCM) and pyrite-polybutylene succinate mixotrophic system (RPPM), were conducted and operated steadily for a long period (>326 d). The mixotrophic systems achieved advanced removal of NO3--N (18 mg L-1) and a small amount of NH4+-N (2.5 mg L-1), with stabilized effluent TIN less than 2 mg L-1 at HRT of 4 h. Additionally, the systems demonstrated several distinct advantages, including no additional alkalinity requirement and a low risk of secondary contamination. RPCM could achieve advanced nitrogen removal at a higher nitrogen loading rate (93.6 mg L-1 d-1) but demanded periodic replenishment of corncob. In contrast, the organic matter release and nitrogen removal performance of RPPM exhibited stability throughout the operation. The increased abundance of functional microorganisms related to C, N, S, and Fe metabolism was essential for advanced nitrogen removal through synergistic effects. This study will provide implications for developing novel wastewater treatment processes emphasizing both nitrogen removal and waste valorization.
Collapse
Affiliation(s)
- Xiaona Zheng
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yanfei Wang
- Nanjing Historical City Protection & Construction (Group) Co., Ltd., Nanjing, 210000, PR China
| | - Yanbo Jiang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China; Nanning Engineering Technology Research Center for Water Safety, Guangxi Beitou Environmental Protection &Water Group Co., Ltd., Nanning, 530022, PR China
| | - Wei Mao
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Minlong Li
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
2
|
Jia L, Zhou Q, Wu W. Optimized Mn cycle enhanced synchronous removal of nitrate and antibiotics driven by manganese oxides/solid carbon composites: Microbiota assembly patterns and electron transport. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136875. [PMID: 39706025 DOI: 10.1016/j.jhazmat.2024.136875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The reactive substance consisting manganese oxides (MnOx) and solid carbon have been reported to be effective in polishing secondary wastewater; however, the treatment characteristics and mechanism remains limited. In this study, MnOx/carbon (Mn-C) composites were applied in biofilters to evaluate simultaneous removal of nitrate and sulfamethoxazole (SMX), with the single carbon composites as control. Results showed that the effluent concentrations of NO3--N and SMX were below 2.87 mg L-1 and 7.97 μg L-1 under hydraulic retention time (HRT) of 6 h. The intermittent aeration optimized Mn cycle with treatment performance improved under lower HRT and Mn(II) accumulation decreased. Mn-C composites could reduce the emission of N2O, CO2 and CH4. The dominant genera gradually evolved from fermentation to glycogen aggregation, and from heterotrophic/sulfur autotrophic to heterotrophic denitrifiers by intracellular substance and manganese autotrophic/heterotrophic bacteria. Microbial network analysis indicated higher antagonism, lower modularity and shorter average path among microbes in Mn-C biofilters, which highlighted microbial differentiation and faster electron transfer. Improved functions of denitrification and Mn respiration, and the increasing genes encoding electron transfer chain, including NADH dehydrogenase, Cytc and ubiquinone, further elucidated the superiority of Mn-C composites. These results improved our understanding of Mn-C composites application in low-carbon wastewater treatment.
Collapse
Affiliation(s)
- Lixia Jia
- Department of Environmental Engineering, School of Environmental and Resource Science, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Qi Zhou
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences (Peking University), Ministry of Education, Beijing 100871, PR China.
| |
Collapse
|
3
|
Gong B, Zhang K, Su M, Yang J, Peng C, Wang Y. Efficient nitrogen and phosphorus removal performance and microbial community in a pilot-scale anaerobic/anoxic/oxic (AOA) system with long sludge retention time: Significant roles of endogenous carbon source. ENVIRONMENTAL RESEARCH 2024; 263:120164. [PMID: 39414113 DOI: 10.1016/j.envres.2024.120164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Stringent wastewater discharge standards require wastewater treatment plants (WWTPs) to focus on enhancing nitrogen (N) and phosphorus (P) removal efficiency. Increasing sludge concentration by regulation of sludge retention time (SRT) would enhance wastewater treatment loads. However, phosphorus-accumulating organisms (PAOs) would be outcompeted by glycogen-accumulating organisms (GAOs) under long SRT, leading to a collapse of P removal. In this work, pilot-scale anaerobic-oxic-anoxic (AOA) and anaerobic-anoxic-oxic (AAO) systems with long SRT (30 d) were parallelly established for actual urban wastewater treatment. The results indicated that sludge reflux ratio, temperature, and C/N ratio significantly impact N and P removal performance of AOA and AAO systems with long SRT, and removal efficiency of AOA system significantly exceeded that of AAO system. AOA system with long SRT achieved the optimal performance at sludge reflux ratio of 200%, temperature of 25 °C, and C/N ratio of 8, with COD, NH4+-N, TN, and PO43--P removal ratio of 92.80 ± 2.24%, 97.38 ± 0.89%, 88.97 ± 2.47%, and 94.33 ± 3.27%, respectively. In addition, compared to AAO system, AOA system could save 23.08% of the aeration volume. This work highlighted that AOA system with long SRT included multiple coupled nitrogen and phosphorus removal pathways, such as autotrophic/heterotrophic nitrification, anoxic/oxic denitrification, endogenous denitrification, and denitrifying phosphorus removal. Among these, the synergistic effect of endogenous denitrification and denitrifying phosphorus removal driven by internal carbon sources contributed to satisfactory nitrogen and phosphorus removal efficiency in AOA system with long SRT.
Collapse
Affiliation(s)
- Benzhou Gong
- Changjiang Survey Planning Design and Research Co., Ltd, Wuhan, 430010, PR China
| | - Kui Zhang
- Changjiang Survey Planning Design and Research Co., Ltd, Wuhan, 430010, PR China
| | - Mubai Su
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Jun Yang
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Cuiyan Peng
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, PR China.
| |
Collapse
|
4
|
Liu H, Liu J, Zhang L, Wang H, Li Y, Chen S, Hou Z, Dong W, Peng Y. Advanced N removal from low C/N sewage via a plug-flow anaerobic/oxic/anoxic (AOA) process: Intensification through partial nitrification, endogenous denitrification, partial denitrification, and anammox (PNEnD/A). WATER RESEARCH 2024; 267:122452. [PMID: 39303577 DOI: 10.1016/j.watres.2024.122452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Achieving low-cost advanced nitrogen (N) removal from municipal wastewater treatment plants (WWTPs) remains a challenge. A plug-flow anaerobic/oxic/anoxic (AOA) system with a mixtures bypass (MBP) integrating partial nitrification (PN), endogenous carbon denitrification (EnD), partial denitrification (PD), and anaerobic ammonium oxidation (Anammox), was constructed to treat actual sewage with a low C/N ratio. The effluent concentrations and removal efficiency of total inorganic nitrogen (TIN) during stable operation were 2.9 ± 0.9 mg/L and 93.1 ± 2.0 %, respectively. EnD was enhanced by the MBP through the efficient utilization of polyhydroxyalkanoates generated in the anaerobic zone. PD was promoted by the addition of carries and sodium acetate to the anoxic tank and the subsequent implantation of the Anammox biofilm successfully coupled PD/A. Stable PN was obtained with a satisfactory nitrite accumulation ratio of 92.6 %, facilitated by carriers and the introduction of hydroxylamine in the oxic zone. Mass balance analysis revealed that EnD and Anammox contributed 40.8 % and 48.2 % of TIN removal, respectively. The enrichment and synergistic effects of ammonia-oxidizing bacteria, denitrifying bacteria, glycogen-accumulating organisms, and anaerobic ammonia-oxidizing bacteria formed a diverses bacterial basis for the establishment of PN, EnD, PD, and Anammox (PNEnD/A) in the AOA system. The successful integration of PNEnD/A into the AOA process provides an innovative approach for low-cost advanced N removal in WWTPs.
Collapse
Affiliation(s)
- Huaguang Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jie Liu
- Shenzhen Wanmu Water Service Co., Ltd, Shenzhen 518119, China
| | - Liang Zhang
- Shenzhen Wanmu Water Service Co., Ltd, Shenzhen 518119, China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Yanchen Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shuo Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zilong Hou
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Chen S, Zhang QP, Zhang JS, An N, Yu HY, Fu X, Li ZH. Enhanced nitrogen removal for low C/N wastewater via preventing futile carbon oxidation and augmenting anammox. WATER RESEARCH X 2024; 25:100253. [PMID: 39291147 PMCID: PMC11405960 DOI: 10.1016/j.wroa.2024.100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Efficient carbon use is crucial for biological nitrogen removal. Traditional aerobic processes can waste carbon sources, exacerbating carbon deficiency. This study explores an anaerobic/oxic/anoxic system with sludge double recirculation to improve nitrogen removal in low C/N wastewater. This system integrated aerobic nitrification after the carbon intracellular storage, separating carbon and nitrogen by denitrifying glycogen-accumulating organisms (DGAOs) with endogenous partial denitrification and Anammox within the anoxic units. A significant efficiency of 91.02±7.01% chemical oxygen demand (COD) was converted into intracellular carbon in anaerobic units, significantly reducing carbon futile oxidation in the aerobic units by effectively separating COD from ammonia. Intracellular storage of carbon sources and microbial adaptation to carbon scarcity prevent futile oxidation of COD in the aerobic units even with short-term high dissolved oxygen (DO), thereby enhancing nitrogen removal under anoxic conditions with sufficient intracellular carbon source. The microbial analysis identified Candidatus Brocadia as the dominant anammox bacteria, in combination with the activity of DGAOs and other related microbial communities, accounting for 37.0% of the TN removal. Consequently, the system demonstrated remarkable nitrogen removal efficiencies, achieving 81.3±3.3% for total nitrogen (TN) and 98.5±0.9% for ammonia nitrogen while maintaining an effluent COD concentration of 17.2±9.1 mg/L, treating the low C/N of 4.18 in the influent wastewater. The findings in this study provide a sustainable and energy-saving technique for conventional WWTPs to meet strict discharge standards by avoiding futile oxidation of COD and encouraging anammox contributions.
Collapse
Affiliation(s)
- Song Chen
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Xi'an Key Laboratory of Intelligent Equipment Technology for Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shenzhen Water (Group) Co., Ltd., Shenzhen 518030, China
| | - Qing-Pei Zhang
- Shenzhen Water (Group) Co., Ltd., Shenzhen 518030, China
| | - Jin-Song Zhang
- Shenzhen Water (Group) Co., Ltd., Shenzhen 518030, China
| | - Na An
- Shenzhen Water (Group) Co., Ltd., Shenzhen 518030, China
| | - Hai-Yang Yu
- Shenzhen Water (Group) Co., Ltd., Shenzhen 518030, China
| | - Xiang Fu
- Shenzhen Water (Group) Co., Ltd., Shenzhen 518030, China
| | - Zhi-Hua Li
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Xi'an Key Laboratory of Intelligent Equipment Technology for Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
6
|
Yang Y, Zhu Y, Gan D, Cai X, Li X, Liu X, Xia S. Enhancing biofilm formation with powder carriers for efficient nitrogen and phosphorus removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175812. [PMID: 39197770 DOI: 10.1016/j.scitotenv.2024.175812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
This study assesses the improvement in nitrogen and phosphorus removal from wastewater achieved through the integration of zeolite and attapulgite carrier materials into the activated sludge (AS) process. It was found that the addition of these materials significantly enhanced the processing performance of the reactor. Specifically, the use of zeolite and attapulgite powders increased sludge particle sizes to averages of 231.56 μm and 219.62 μm, respectively. This facilitated micro-granule formation, substantially improving the settling characteristics of the sludge and boosting the activity and proliferation of essential microbes. Illumina MiSeq sequencing demonstrated significant accumulations of DGAOs (Candidatus_Competibacter) and DPAOs (Candidatus_Accumulibacter). Furthermore, these carriers augmented the protein content in extracellular polymers, enhancing the hydrophobicity of the sludge and promoting aggregation. Comparative analysis based on the extended Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory indicated a preferential adhesion affinity of sludge for zeolite compared to attapulgite, attributed primarily to Lewis acid-base and electric double-layer interactions. These findings underscore zeolite's enhanced efficacy in biomass fixation and suggest significant potential for the technological advancement of wastewater treatment plants.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuting Zhu
- Tongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China
| | - Defu Gan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiang Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaodi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xinchao Liu
- Tongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
7
|
Liu Y, Wan H, Niu J, Zhao M, Shang W, Li P, Li J, Zhang Y, Wu Z, Zhao Y. 3D printing for constructing biocarriers using sodium alginate/ε-poly-l-lysine ink: Enhancing microbial enrichment for efficient nitrogen removal in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175296. [PMID: 39111417 DOI: 10.1016/j.scitotenv.2024.175296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
The microbial enrichment of traditional biocarriers is limited due to the inadequate consideration of spatial structure and surface charging characteristics. Here, capitalizing on the ability of 3D printing technology to fabricate high-resolution materials, we further designed a positively charged sodium alginate/ε-poly-l-lysine (SA/ε-PL) printing ink, and the 3D printed biocarriers with ideal pore structure and rich positive charge were constructed to enhance the microbial enrichment. The rheological and mechanical tests confirmed that the developed SA/ε-PL ink could simultaneously satisfy the smooth extrusion for printing process and the maintenance of 3D structure. The utilization of the ε-PL secondary cross-linking strategy reinforced the 3D mechanical structure and imparted the requisite physical properties for its application as a biocarrier. Compared with traditional sponge carriers, 3D printed biocarrier had a faster initial attachment rate and a higher biomass of 14.58 ± 1.18 VS/cm3, and the nitrogen removal efficiency increased by 53.9 %. Besides, due to the superior electrochemical properties and biocompatibility, the 3D printed biocarriers effectively enriched the electroactive denitrifying bacteria genus Trichococcus, thus supporting its excellent denitrification performance. This study provided novel insights into the development of new functional biocarriers in the wastewater treatment, thereby providing scientific guidance for practical engineering.
Collapse
Affiliation(s)
- Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Huilin Wan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Wei Shang
- North China Municipal Engineering Design and Research Institute Co., Ltd, Tianjin 300202, China
| | - Pengfeng Li
- North China Municipal Engineering Design and Research Institute Co., Ltd, Tianjin 300202, China
| | - Jiaju Li
- North China Municipal Engineering Design and Research Institute Co., Ltd, Tianjin 300202, China
| | - Yue Zhang
- North China Municipal Engineering Design and Research Institute Co., Ltd, Tianjin 300202, China
| | - Zuodong Wu
- Tianjin Water Engineering Co., Ltd, Tianjin 300222, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
8
|
Wu T, Ding J, Zhao YJ, Ding L, Zang Y, Sun HJ, Zhong L, Pang JW, Li Y, Ren NQ, Yang SS. Microplastics shaped performance, microbial ecology and community assembly in simultaneous nitrification, denitrification and phosphorus removal process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172651. [PMID: 38653406 DOI: 10.1016/j.scitotenv.2024.172651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The widespread use of microplastics (MPs) has led to an increase in their discharge to wastewater treatment plants. However, the knowledge of impact of MPs on macro-performance and micro-ecology in simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) systems is limited, hampering the understanding of potential risks posed by MPs. This study firstly comprehensively investigated the performance, species interactions, and community assembly under polystyrene (PS) and polyvinyl chloride (PVC) exposure in SNDPR systems. The results showed under PS (1, 10 mg/L) and PVC (1, 10 mg/L) exposure, total nitrogen removal was reduced by 3.38-10.15 %. PS and PVC restrained the specific rates of nitrite and nitrate reduction (SNIRR, SNRR), as well as the activities of nitrite and nitrate reductase enzymes (NIR, NR). The specific ammonia oxidation rate (SAOR) and activity of ammonia oxidase enzyme (AMO) were reduced only at 10 mg/L PVC. PS and PVC enhanced the size of co-occurrence networks, niche breadth, and number of key species while decreasing microbial cooperation by 5.85-13.48 %. Heterogeneous selection dominated microbial community assembly, and PS and PVC strengthened the contribution of stochastic processes. PICRUSt prediction further revealed some important pathways were blocked by PS and PVC. Together, the reduced TN removal under PS and PVC exposure can be attributed to the inhibition of SAOR, SNRR, and SNIRR, the restrained activities of NIR, NR, and AMO, the changes in species interactions and community assembly mechanisms, and the suppression of some essential metabolic pathways. This paper offers a new perspective on comprehending the effects of MPs on SNDPR systems.
Collapse
Affiliation(s)
- Tong Wu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying-Jun Zhao
- Zhe Jiang University of Technology Engineering Design Group CO., Ltd, China
| | - Lan Ding
- Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yani Zang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Yan Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Zhang G, Li W, Wang S, Li D, Zhang D, Lv L. Evaluation of various carbon sources on ammonium assimilation and denitrifying phosphorus removal in a modified anaerobic-anoxic-oxic process from low-strength wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171890. [PMID: 38521280 DOI: 10.1016/j.scitotenv.2024.171890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
A pilot-scale continuous-flow modified anaerobic-anoxic-oxic (MAAO) process examined the impact of external carbon sources (acetate, glucose, acetate/propionate) on ammonium assimilation, denitrifying phosphorus removal (DPR), and microbial community. Acetate exhibited superior efficacy in promoting the combined process of ammonia assimilation and DPR, enhancing both to 50.0 % and 60.0 %, respectively. Proteobacteria and Bacteroidota facilitated ammonium assimilation, while denitrifying phosphorus-accumulating organisms (DPAOs) played a key role in nitrogen (N) and phosphorus (P) removal. Denitrifying glycogen-accumulating organisms (DGAOs) aided N removal in the anoxic zone, ensuring stable N and P removal and recovery. Acetate/propionate significantly enhanced DPR (77.7 %) and endogenous denitrification (37.9 %). Glucose favored heterotrophic denitrification (29.6 %) but had minimal impact on ammonium assimilation. These findings provide valuable insights for wastewater treatment plants (WWTPs) seeking efficient N and P removal and recovery from low-strength wastewater.
Collapse
Affiliation(s)
- Guanglin Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shuncai Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Donghui Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin 150080, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
10
|
Ni PY, Zhang X, Ye M, He R. Biochar enhanced the stability of toluene removal in extracted groundwater amended with nitrate under microaerobic conditions. CHEMOSPHERE 2024; 353:141551. [PMID: 38430935 DOI: 10.1016/j.chemosphere.2024.141551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/28/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Groundwater pollution caused by the leakage of petroleum and various fuel oils is becoming a serious environmental problem. In this study, carbon-based materials including biochar and hydrochar were applied to investigate the effects of additives on the toluene removal in the extracted groundwater under microaerobic condition with the addition of nitrate. Biochar and hydrochar could adsorb toluene, and thus enhance the toluene removal in the system. The toluene removal efficiency was 8.2-8.9 mg/(g·h) at the beginning, and then decreased with time in the control and the hydrochar treatment, while it remained the stable values in the biochar treatment, owing to the fact that biochar could reduce the NO3--N loss by partial denitrification. Moreover, biochar could prompt the growth of toluene-degrading bacteria including Thauera, Rhodococcus, Ideonella and Denitratisoma, which had the capability of denitrification. However, hydrochar could stimulated the growth of denitrifiers without toluene-degrading capacity including Candidatus Competibacter and Ferrovibrio, which might play a key role in the partial denitrification of the system. The findings are helpful for developing remediation techniques of contaminated groundwater.
Collapse
Affiliation(s)
- Pan-Yue Ni
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xin Zhang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Min Ye
- Hangzhou Institute of Ecological and Environmental Sciences, Hangzhou, 310005, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
11
|
Gao Z, Bi X, Zhao J, Ding X, Li Y, Shi J, Pan X, Bai M, Miao Y, Zhang J. Self-cultivating anammox granules for enhancing wastewater nitrogen removal in nitrification-denitrification flocculent sludge system. BIORESOURCE TECHNOLOGY 2024; 397:130458. [PMID: 38373506 DOI: 10.1016/j.biortech.2024.130458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
The feasibility of self-cultivating anammox granules for enhancing wastewater nitrogen removal was investigated in a nitrification-denitrification flocculent sludge system. Desirable nitrogen removal efficiency of 84 ± 4 % was obtained for the influent carbon to nitrogen ratio of 1-1.3 (NH4+-N: 150-200 mg N/L) via alternate anaerobic/oxic/anoxic mode. Meanwhile, some red granular sludge was formed in the system. The abundance and activity of anaerobic ammonia oxidation bacteria (AnAOB) increased from 'not detected' in seed sludge to 0.57 % and 29.4 ± 0.7 mg N/(g mixed liquor volatile suspended solids·h) in granules, respectively, suggesting successful cultivation of anammox granules. Furthermore, some denitrifying bacteria with capability of partial denitrification were enriched, such as Candidatus Competibacter (2.45 %) and Thauera (5.75 %), which could cooperate with AnAOB, facilitating AnAOB enrichment. Anammox was dominant in nitrogen removal with the contribution to nitrogen removed above 68.8 ± 0.3 %. The strategy of self-cultivating anammox granules could promote the application of anammox.
Collapse
Affiliation(s)
- Zhongxiu Gao
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Xuejun Bi
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Jixiang Zhao
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Xiang Ding
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Yitong Li
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Junhui Shi
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Xinlei Pan
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Meng Bai
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Yuanyuan Miao
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Jianhua Zhang
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China.
| |
Collapse
|
12
|
Luan YN, Yin Y, Guo Z, Yang J, Wang G, Zhang F, Xiao Y, Liu C. Achieving simultaneous nitrification and endogenous denitrifying phosphorus removal in anaerobic/intermittently-aerated moving bed biofilm reactor for low carbon-to-nitrogen ratio wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 394:130178. [PMID: 38072080 DOI: 10.1016/j.biortech.2023.130178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 02/04/2024]
Abstract
In this study, an anaerobic/intermittently-aerated moving bed biofilm reactor (AnIA-MBBR) was proposed to realize simultaneous nitrification and endogenous denitrifying phosphorus removal (SNEDPR) in treating low carbon-to-nitrogen (C/N) ratio wastewater. The effect of different intermittent aeration modes (short and long aeration) on nutrients' removal was investigated. With the C/N ratio around 3, the removal efficiencies of total nitrogen and phosphorus were 90% and 74%, 88% and 59%, respectively, for short aeration and long aeration. The different aeration time also altered the nutrients' degradation pathway, biofilm characteristics, microbial community, and functional metabolic pathways. The results confirmed the occurrence of aerobic denitrifiers, anoxic denitrifiers, phosphorus accumulating organisms, glycogen accumulating organisms in AnIA-MBBR systems and their synergistic performance induced the SNEDPR. These results indicated that the application of AnIA in MBBR systems was an effective strategy to achieve SNEDPR, providing better simultaneous removal performance of nitrogen and phosphorus from low C/N ratio wastewater.
Collapse
Affiliation(s)
- Ya-Nan Luan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Yue Yin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Zhonghong Guo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiaqi Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Guanglei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Feng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| |
Collapse
|
13
|
Huang R, Geng M, Gao S, Yin X, Tian J. In-depth insight into improvement of simultaneous nitrification and denitrification/biofouling control by increasing sludge concentration in membrane reactor: performance, microbial assembly and metagenomic analysis. BIORESOURCE TECHNOLOGY 2024; 393:130013. [PMID: 37956947 DOI: 10.1016/j.biortech.2023.130013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Currently, severe membrane fouling and inefficient nitrogen removal were two main issues that hindered the sustainable operation and further application of membrane bioreactor (MBR). This study aimed to simultaneously alleviate membrane fouling and improve nitrogen removal by applying high sludge concentration in MBR. Results showed that high sludge concentration (12000 mg/L) enhanced total nitrogen removal efficiency (78 %) and reduced transmembrane pressure development rate. Microbial community analysis revealed that high sludge concentration enriched functional bacteria associated with nitrogen removal, increased filamentous bacteria fraction in bio-cake and inhibited Thiothrix overgrowth in bulk sludge. From molecular level, the key genes involved in nitrogen metabolism, electron donor/adenosine triphosphate production and amino acid degradation were up-regulated under high sludge concentration. Overall, high sludge concentration improved microbial assembly and functional gene abundance, which not only enhanced nitrogen removal but also alleviated membrane fouling. This study provided an effective strategy for sustainable operation of MBR.
Collapse
Affiliation(s)
- Rui Huang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; Guangdong GDH Water Co. Ltd, Shenzhen 518021, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mingyue Geng
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xing Yin
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
14
|
He Q, Yan X, Wang H, Ji Y, Li J, Liu L, Bi P, Xu P, Xu B, Ma J. Towards a better understanding of the anaerobic/oxic/anoxic-aerobic granular sludge process (AOA-AGS) for simultaneous low-strength wastewater treatment and in situ sludge reduction from ambient to winter temperatures. ENVIRONMENTAL RESEARCH 2023; 236:116822. [PMID: 37541415 DOI: 10.1016/j.envres.2023.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
The new anaerobic/oxic/anoxic-aerobic granular sludge (AOA-AGS) merits the advantages of effective carbon utilization and low-carbon treatment. However, low temperature poses stressing concerns and the resisting mechanism remains much unknown. Herein, an AOA-AGS process was configured for simultaneous nitrification, denitrification and phosphorus removal (SNDPR) with low-strength wastewater from ambient (>15 °C) to winter temperatures (<15 °C). Results showed that simultaneously advanced nutrients removal, and dramatic in situ sludge reduction (Yobs of 0.093 g MLSS/g COD) were gained regardless of seasonally decreasing temperatures. Winter temperatures even amplified Candidatus Competibacter predominating from 20.11% to 34.74%, which laid the core basis for endogenous denitrification, sludge minimization and temperature resistance. A removal model was thus proposed given the observed functional groups, and doubts were also raised for future investigations. This study would aid a better understanding on the microbial ecology and engineering aspects of the new AOA-AGS process treating low-strength wastewater at low temperatures.
Collapse
Affiliation(s)
- Qiulai He
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Xiaohui Yan
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430082, China
| | - Yaning Ji
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Jinfeng Li
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Liang Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Peng Bi
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Peng Xu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Baokun Xu
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Jingwei Ma
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|