1
|
Kamada M, Yasuta C, Higuchi Y, Yoshida A, Kurnia I, Sakamoto C, Takeuchi A, Osaka Y, Muraki K, Kamimura N, Masai E, Sonoki T. Engineering a vanillate-producing strain of Pseudomonas sp. NGC7 corresponding to aromatic compounds derived from the continuous catalytic alkaline oxidation of sulfite lignin. Microb Cell Fact 2024; 23:313. [PMID: 39563320 PMCID: PMC11575180 DOI: 10.1186/s12934-024-02590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
INTRODUCTION Lignin is a promising resource for obtaining aromatic materials, however, its heterogeneous structure poses a challenge for effective utilization. One approach to produce homogeneous aromatic materials from lignin involves the application of microbial catabolism, which is gaining attention. This current study focused on constructing a catabolic pathway in Pseudomonas sp. NGC7 to produce vanillate (VA) from aromatic compounds derived from the chemical depolymerization of sulfite lignin. RESULTS Alkaline oxidation of sulfite lignin was performed using a hydroxide nanorod copper foam [Cu(OH)2/CF]-equipped flow reactor. The flow reactor operated continuously for 50 h without clogging and it yielded a sulfite lignin stream containing acetovanillone (AV), vanillin (VN), and VA as the major aromatic monomers. The catabolic pathway of Pseudomonas sp. NGC7 was optimized to maximize VA production from aromatic monomers in the sulfite lignin stream derived from this oxidation process. Pseudomonas sp. NGC7 possesses four gene sets for vanillate O-demethylase, comprising the oxygenase component (vanA) and its oxidoreductase component (vanB). Among these, the vanA4B4 gene set was identified as the key contributor to VA catabolism. To facilitate the conversion of AV to VA, AV-converting enzyme genes from Sphingobium lignivorans SYK-6 were introduced. The ΔvanA4B4 strain, harboring these AV-converting genes, produced VA from the sulfite lignin stream with 91 mol%. Further disruption of vanA1B1, vanA2B2, vanA3B3, and a vanillin reductase gene, in addition to vanA4B4, and introduction of a 5-carboxyvanillate decarboxylase gene from S. lignivorans SYK-6 to utilize 5-carboxyvanillin and 5-carboxyvanillate from the sulfite lignin stream for VA production achieved a VA yield of 103 mol%. CONCLUSION Developing methods to overcome lignin heterogeneity is essential for its use as a raw material. Consolidating continuous alkaline oxidation of lignin in a Cu(OH)2/CF-packed flow reactor and biological funneling using an engineered catabolic pathway of Pseudomonas sp. NGC7 is a promising approach to produce VA for aromatic materials synthesis. NGC7 possesses a higher adaptability to various aromatic compounds generated from the alkaline oxidation of lignin and its natural ability to grow on p-hydroxyphenyl, guaiacyl, and syringyl compounds underscores its potential as a bacterial chassis for VA production from a wide range of lignin-derived aromatic compounds.
Collapse
Affiliation(s)
- Mami Kamada
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Chieko Yasuta
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Yudai Higuchi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Akihiro Yoshida
- Institute of Regional Innovation, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Irwan Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21 Jatinangor, Sumedang, 45363, Indonesia
| | - Chiho Sakamoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Aya Takeuchi
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Yuta Osaka
- Institute of Regional Innovation, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Kanami Muraki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Tomonori Sonoki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan.
| |
Collapse
|
2
|
Yoshida A, Kurnia I, Higuchi Y, Osaka Y, Yasuta C, Sakamoto C, Tamura M, Takamatsu T, Kamimura N, Masai E, Sonoki T. Direct catalytic oxidation of rice husk lignin with hydroxide nanorod-modified copper foam and muconate production by engineered Pseudomonas sp. NGC7. J Biosci Bioeng 2024; 138:431-438. [PMID: 39191570 DOI: 10.1016/j.jbiosc.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
For the direct alkaline oxidation of rice husk lignin, we developed a copper foam-based heterogeneous catalyst that offers advantages in its recovery after the reaction mixture. The depolymerized products were utilized for muconate production by an engineered Pseudomonas sp. NGC7-based strain. A hydroxide nanorod-modified copper foam was prepared by the surface oxidation of copper foam, followed by alkaline oxidation of rice husk lignin over the catalyst. The catalyst was easily separated from the cellulosic residues in the reaction mixture, and the residues were then recovered by filtration. The resulting lignin stream was composed of a variety of aromatic monomers containing p-hydroxyphenyl, guaiacyl, and syringyl compounds. The catabolic activity of Pseudomonas sp. NGC7 was demonstrated to be more suitable for muconate production from a mixture comprising 4-hydroxybenzoate (a typical p-hydroxyphenyl compound), vanillate (a guaiacyl compound), and syringate (a syringyl compound), owing to its natural ability to grow on syringate. Thus, it was applied to produce muconate from a rice husk lignin stream prepared through hydroxide nanorod-modified copper foam-catalyzed alkaline oxidation by conferring the genes responsible for converting the acetophenone derivatives to their corresponding aromatic acids and protocatechuate decarboxylase to an NGC7-based strain deficient in protocatechuate 3,4-dioxygenase and muconate cycloisomerase. As a result, the engineered NGC7-based muconate-producing strain produced muconate selectively from the rice husk lignin stream at 93.7 mol% yield.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Institute of Regional Innovation (IRI), Hirosaki University, Hirosaki, Aomori 036-8561, Japan; Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Irwan Kurnia
- Institute of Regional Innovation (IRI), Hirosaki University, Hirosaki, Aomori 036-8561, Japan; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21 Jatinangor, Sumedang 45363, Indonesia
| | - Yudai Higuchi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Yuta Osaka
- Institute of Regional Innovation (IRI), Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Chieko Yasuta
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Chiho Sakamoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Mina Tamura
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Tsubasa Takamatsu
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Tomonori Sonoki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
3
|
He Z, Jiang G, Gan L, He T, Tian Y. Bacterial valorization of lignin for the sustainable production of value-added bioproducts. Int J Biol Macromol 2024; 279:135171. [PMID: 39214219 DOI: 10.1016/j.ijbiomac.2024.135171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
As the most abundant aromatic biopolymer in the biosphere, lignin represents a promising alternative feedstock for the industrial production of various value-added bioproducts with enhanced economical value. However, the large-scale implementation of lignin valorization remains challenging because of the heterogeneity and irregular structure of lignin. General fragmentation and depolymerization processes often yield various products, but these approaches necessitate tedious purification steps to isolate target products. Moreover, microbial biocatalytic processes, especially bacterial-based systems with high metabolic activity, can depolymerize and further utilize lignin in an eco-friendly way. Considering that wild bacterial strains have evolved several metabolic pathways and enzymatic systems for lignin degradation, substantial efforts have been made to exploit their potential for lignin valorization. This review summarizes recent advances in lignin valorization for the production of value-added bioproducts based on bacterial systems. Additionally, the remaining challenges and available strategies for lignin biodegradation processes and future trends of bacterial lignin valorization are discussed.
Collapse
Affiliation(s)
- Zhicheng He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Guangyang Jiang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, China
| | - Longzhan Gan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Yongqiang Tian
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, China.
| |
Collapse
|
4
|
Ji T, Liaqat F, Khazi MI, Liaqat N, Nawaz MZ, Zhu D. Lignin biotransformation: Advances in enzymatic valorization and bioproduction strategies. INDUSTRIAL CROPS AND PRODUCTS 2024; 216:118759. [DOI: 10.1016/j.indcrop.2024.118759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
5
|
Li J, Fu J, Shang Y, Wei W, Zhang P, Wang X, Ye BC. Metabolic Engineering of Pseudomonas putida KT2440 for De Novo Biosynthesis of Vanillic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4217-4224. [PMID: 38356383 DOI: 10.1021/acs.jafc.3c07828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Vanillic acid (VA), as a plant-derived phenolic acid compound, has widespread applications and good market prospects. However, the traditional production process cannot meet market demand. In this study, Pseudomonas putida KT2440 was used for de novo biosynthesis of VA. Multiple metabolic engineering strategies were applied to construct these P. putida-based cell factories, including the introduction of a Hs-OMTopt, engineering the cofactor S-adenosylmethionine supply pathway through the overexpression of metX and metH, reforming solubility of Hs-OMTopt, increasing a second copy of Hs-OMTopt, and the optimization of the fermentation medium. The resulting strain, XCS17, de novo biosynthesized 5.4 g/L VA from glucose in a fed-batch fermentation system; this is the highest VA production titer reported up to recently. This study showed that P. putida KT2440 is a robust platform for achieving the effective production of phenolic acids.
Collapse
Affiliation(s)
- Jin Li
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianli Fu
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanzhe Shang
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Wei
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Zhang
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Wang
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|