1
|
Gong F, He C, Li X, Wang K, Li M, Zhou X, Xu M, He X. Impacts of fertilization methods on Salvia miltiorrhiza quality and characteristics of the epiphytic microbial community. FRONTIERS IN PLANT SCIENCE 2024; 15:1395628. [PMID: 38817929 PMCID: PMC11138495 DOI: 10.3389/fpls.2024.1395628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024]
Abstract
Plant epiphytic microorganisms have established a unique symbiotic relationship with plants, which has a significant impact on their growth, immune defense, and environmental adaptation. However, the impact of fertilization methods on the epiphytic microbial community and their correlation with the yield and quality of medicinal plant was still unclear. In current study, we conducted a field fertilization experiment and analyzed the composition of epiphytic bacterial and fungal communities employing high throughput sequencing data in different organs (roots, stems, and leaves) of Salvia miltiorrhiza, as well as their correlation with plant growth. The results showed that fertilization significantly affected the active ingredients and hormone content, soil physicochemical properties, and the composition of epiphytic microbial communities. After fertilization, the plant surface was enriched with a core microbial community mainly composed of bacteria from Firmicutes, Proteobacteria, and Actinobacteria, as well as fungi from Zygomycota and Ascomycota. Additionally, plant growth hormones were the principal factors leading to alterations in the epiphytic microbial community of S. miltiorrhiza. Thus, the most effective method of fertilization involved the application of base fertilizer in combination with foliar fertilizer. This study provides a new perspective for studying the correlation between microbial community function and the quality of S. miltiorrhiza, and also provides a theoretical basis for the cultivation and sustainable development of high-quality medicinal plants.
Collapse
Affiliation(s)
- Feng Gong
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kehan Wang
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Min Li
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Xiangyun Zhou
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Minghui Xu
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Xueli He
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| |
Collapse
|
2
|
Liang X, Wen X, Yang H, Lu H, Wang A, Liu S, Li Q. Incorporating microbial inoculants to reduce nitrogen loss during sludge composting by suppressing denitrification and promoting ammonia assimilation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170000. [PMID: 38242453 DOI: 10.1016/j.scitotenv.2024.170000] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 01/21/2024]
Abstract
To address the challenge of increasing nitrogen retention in compost, this study investigated the effects of microbial communities on denitrification and ammonia assimilation during sludge composting by inoculating microbial inoculants. The results showed that the retention rates of total Kjeldahl nitrogen (TKN) and humic acid (HA) in MIs group (with microbial inoculants) were 4.94 % and 18.52 % higher than those in the control group (CK), respectively. Metagenomic analysis showed that Actinobacteria and Proteobacteria were identified as main microorganisms contributing to denitrification and ammonia assimilation. The addition of microbial agents altered the structure of the microbial community, which in turn stimulated the expression of functional genes. During cooling period, the ammonia assimilation genes glnA, gltB and gltD in MIs were 15.98 %, 24.84 % and 32.88 % higher than those in CK, respectively. Canonical correspondence analysis revealed a positive correlation between the dominant bacterial genera from the cooling stage to the maturity stage and the levels of NO3--N, NH4+-N, HA, and TKN contents. NH4+-N was positively correlated with HA, indicating NH4+-N might be incorporated into HA. Heat map and network analyses revealed NH4+-N as a key factor affecting functional genes of denitrification and ammonia assimilation, with Nitrospira identified as the core bacteria in the microbial network. Therefore, the addition of microbial agents could increase nitrogen retention and improve compost product quality.
Collapse
Affiliation(s)
- Xueling Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongmei Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Heng Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ao Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shuaipeng Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Li Y, Li J, Chang Y, Li R, Zhou K, Zhan Y, Wei R, Wei Y. Comparing bacterial dynamics for the conversion of organics and humus components during manure composting from different sources. Front Microbiol 2023; 14:1281633. [PMID: 37840749 PMCID: PMC10568323 DOI: 10.3389/fmicb.2023.1281633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The study aimed to compare the differences in organic fractions transformation, humus components and bacterial community dynamics during manure composting from different sources, and to identify the key biotic and abiotic factors driving the humification process. Five types of manure [pig manure (PM), cow dung (CD), sheep manure (SM), chicken manure (CM), and duck manure (DM)] were used as raw materials for 30 days composting. The results showed the obvious difference of organic fractions decomposition with more cellulose degradation in CD and SM composting and more hemicellulose degradation in PM and CM composting. Composting of PM and CD contained significantly higher humus fractions than the other composts. Fluorescence spectra indicated that SM composting tended to form structurally stable humic acid fractions, while CM and DM tended to form structurally complex fulvic acid fractions. Pearson correlation analysis showed that humification process of composts in category A (PM, CD) with higher humification degree than category B (SM, CM, and DM) was positively correlated with lignin and hemicellulose degradation. Bioinformatics analysis found that Lysinibacillus promoted the degradation of hemicellulose and the conversion of fulvic to humic acid in the composts of category A, and in category B, Thermobifida, Lactobacillus, and Ureibacillus were key genera for humic acid formation. Network analysis indicated that bacterial interaction patterns had obvious differences in composting with different humus and humification levels.
Collapse
Affiliation(s)
- Yan Li
- Central Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
- Haikou City Key Laboratory of Clinical Medicine, Haikou, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou, China
| | - Jun Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Yabin Zhan
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Renyue Wei
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| |
Collapse
|