1
|
Cui H, Hou SN, Wang XY, Li L, Dai XH, Zhu H. Microbial fuel cell-assisted composting yields higher performance on metals passivation, antibiotics degradation, and resistance genes removal. ENVIRONMENTAL RESEARCH 2025; 265:120421. [PMID: 39581252 DOI: 10.1016/j.envres.2024.120421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Little scientific evidence on metal passivation, antibiotic degradation and resistance genes removal, is available under autogenetic electrochemical reactions during composting process. This study established microbial fuel cell (MFC)-assisted composting procedure to ascertain the removal performance and detoxification mechanisms involving metals, antibiotics and their resistance genes. Compared to control treatment, the bioavailability of zinc (Zn) and copper (Cu) in MFC-assisted treatment decreased by 7.8% and 26.9%, while the content of tetracycline (TCL) and oxytetracycline (OCL) reduced by 100% and 89%, respectively. Organics mineralization and humification were responsible for 80% and 70% of the variations in metal passivation and antibiotic degradation during composting process. A decrease of 54% was found for tetW gene, while copA gene increased by 42% in MFC-assisted composting treatment. These findings highlight the detoxification mechanisms underlying metal passivation and antibiotic degradation during composting process, and potentially offer valuable insights for environmental source protection and agricultural sustainable development.
Collapse
Affiliation(s)
- Hu Cui
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Sheng-Nan Hou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xin-Yi Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiao-Hu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hui Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
2
|
Sun R, Li Q. Exogenous additive ferric sulfate regulates sulfur-oxidizing bacteria in cow manure composting to promote carbon fixation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32212-32224. [PMID: 38649605 DOI: 10.1007/s11356-024-33417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Enhancing carbon fixation in the composting process was of great significance in the era of massive generation of organic solid waste. In this study, the experimental results showed that the contents of dissolved organic matter (DOM) in the experimental group (CT) were 37.58% higher than those in the control group (CK). The CO2 emission peaked on day 5, and the value of CK was 1.34 times that of CT. Significant differences were observed between the contents of sulfur fractions in CT and CK. This phenomenon may be due to the suppression of sulfur-reducing gene expression in CT. On day 51 of composting, the abundance of sulfur-oxidizing bacteria (SOB) Rhodobacter (5.33%), Rhodovulum (14.76%), and Thioclava (23.83%) in CT was higher than that in CK. In summary, the composting fermentation regulated by Fe2(SO4)3 increased the sulfate content, enhanced the expression of sulfur-oxidizing genes and SOB, and ultimately promoted carbon sequestration during composting.
Collapse
Affiliation(s)
- Ru Sun
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Xuehan F, Xiaojun G, Weiguo X, Ling Z. Effect of the addition of biochar and wood vinegar on the morphology of heavy metals in composts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118928-118941. [PMID: 37922076 DOI: 10.1007/s11356-023-30645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
In the experiment, the morphology of heavy metals (Pb, Cr, Cd, and Ni, HMs) was characterized using flame atomic absorption spectroscopy. In addition, Fourier transform infrared spectroscopy (FTIR) and three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM) were used to characterize the correlation between environmental factors and metal morphology in the rotting compost from several angles. The results showed that the humus treated with wood vinegar solution had a high degree of humification and rich aromatic structure. FTIR spectroscopy confirmed that the degree of humus aromatization gradually increased during the composting process, which enhanced the complexation of humus (HS) with HMs but had less effect on Ni. In addition, the optimum concentration of wood vinegar (WV) was determined to be 1.75%. The results of the study showed that in the Pb passivation treatment group, the proportion of soluble (Red) and exchangeable states (Exc) converted to oxidized (Oxi) and residual states (Res) was 8%, 14%, 6%, 1%, and 12% in the CK, T1, T2, T3, and T4 treatment groups, respectively; in the Cr passivation treatment group, the proportion of Cr-Red and Cr-Exc converted to oxidized and residual states was 31%, 33%, 25%, 29%, and 25%; in the Cd passivation treatment group, the proportions of Cd-Red and Cd-Exc converted to oxidized and residual states were 5%, 15%, 4%, 9%, and 11%, respectively; whereas the Ni treatment group did not show any significant passivation effect. The proportion of Pb-Oxi was relatively stable, Cr-Oxi was converted to Cr-Res, whereas Cd showed the conversion of Cd-Oxi to Cd-Exc. SUVA254 and SUVA280 showed significant positive correlations with Pb-Res, Cr-Res and Ni-Res, and significant positive correlations with moisture content (MC); whereas MC was significantly negatively correlated with each form of HMs. Total potassium (TK), total nitrogen (TN), and both carbon (TOC) were negatively correlated with Pb-Res and Pb-Exc. Structural equation modeling verified the relationship between environmental factors and HMs, and the composting results showed that the addition of biochar (BC) and a higher percentage of WV could increase compost decomposition and passivate HMs to improve its agronomic function.
Collapse
Affiliation(s)
- Fu Xuehan
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China
| | - Guo Xiaojun
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China
| | - Xu Weiguo
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China
| | - Zhou Ling
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China.
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China.
| |
Collapse
|