1
|
Shen D, Su L, Ding H, Long Y, Hui C. Study on the growth and decline patterns and environmental drivers of pathogens during the stabilization process of simulated landfilling municipal solid waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 201:114791. [PMID: 40222285 DOI: 10.1016/j.wasman.2025.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Waste and leachate in landfills are substantial reservoirs of pathogens, however information about the risk of pathogen contamination during the stabilization process under different landfill conditions is very limited. In this study, dynamic changes of culturable pathogens, bacteria community, and human bacterial pathogens (HBPs) during the stabilization process under different landfill conditions were investigated, and the environmental drivers were explored. Results showed that total coliforms, Enterococcus, and Staphylococcus aureus were the dominant pathogens detected in waste and leachate samples. During the landfill stabilization process, the concentration of culturable pathogens peaked at the hydrolysis-acidification stage (3.6 × 105 CFU·g-1) in the anaerobic condition, fluctuated from 4.18 × 104 to 5.35 × 105 CFU·g-1 in the anaerobic leachate-recirculation condition, and kept rising (from 4.18 × 104 to 2.12 × 106 CFU·g-1) in the micro-aerobic condition. Moreover, HBPs abundance and diversity in the waste and leachate under micro-aerobic conditions were higher than those under the other two conditions, suggesting a higher risk of pathogen contamination. Sulfate and pH were significantly (p < 0.05) correlated with the composition of bacterial communities and HBPs, likely serving as the major environmental driving factors. Additionally, the interactions between HBPs and functional bacterial groups tended towards cooperative symbiotic relationships, with hydrolytic-acidogenic bacteria promoting the growth and proliferation of most pathogens. These findings will help to understand the changes and environmental drivers of pathogens during landfill stabilization, which will provide a theoretical basis for the risk prevention and control of pathogens in waste disposal.
Collapse
Affiliation(s)
- Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Liya Su
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hening Ding
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Cai Hui
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
2
|
Djezzar M, Kaci Z, Yahiaoui I, Leauthaud C. Oxygen and hydrobiological profiles of homemade manure-based tea in North Africa. Sci Rep 2025; 15:5130. [PMID: 39934195 PMCID: PMC11814071 DOI: 10.1038/s41598-025-88254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Homemade manure tea (HMT) is commonly used in North Africa to enhance crop yields. Yet their physicochemical and biological characteristics remain poorly understood. This study evaluated oxygen and hydrobiological profiles of three types of HMT (bovine, ovine and poultry based, respectively noted HMTb, HMTo, HMTp) and compared them to control solutions of water and water supplemented with soluble NPK fertilizer. For these three types of HMT, oxygen and hydrobiological profiles were measured daily over a 7-day incubation period in three repeated, identical experiments, each comprising randomized treatments and five repetitions per treatment. Our results show that all HMT types rapidly transitioned to hypoxic conditions in the first 24h, shifting to anoxia between day 2 and day 7 depending on HMT type. This anoxic environment promoted denitrification and led to elevated NH4+ concentrations, suggesting the presence of anammox and microaerobic processes. Particulate organic matter contents and bacterial densities were highest in HMTp, while ciliate densities were highest in HMTb. These findings underscore the bioactive potential of HMT as fertilizers, with HMTp showing a favorable nitrogen profile beneficial for agricultural applications. To maintain aerobic conditions longer and reduce nitrogen losses and greenhouse gas emissions, we recommend passive or mechanical aeration, applying HMT during cooler hours, and stabilizing the pH of HMT. This study offers valuable insights to refine HMT preparation protocols, enhancing their use as bioactive fertilizers.
Collapse
Affiliation(s)
- Miliani Djezzar
- ERP Laboratory, Faculty of Nature and Life Sciences and Earth Sciences, Djilali Bounaama University of Khemis Miliana, Theniet El Had Road, 44065, Khemis-Miliana, Algeria.
| | - Zakia Kaci
- ERP Laboratory, Faculty of Nature and Life Sciences and Earth Sciences, Djilali Bounaama University of Khemis Miliana, Theniet El Had Road, 44065, Khemis-Miliana, Algeria
| | - Ibrahim Yahiaoui
- LMVAAE Laboratory, Institute of Nature and Life Sciences, University Centre Morsli Abdellah of Tipaza, 42002, Tipaza, Algeria
| | - Crystele Leauthaud
- G-EAU, Agro Paris Tech, Cirad, IRD, INRAE, L'Institut Agro, Univ Montpellier, Montpellier, France
- University of California Agriculture and Natural Resources (ANR), 2801 2Nd St, Davis, CA, 95618, USA
- Center for Agroecology, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
3
|
Alam M, Mostafa A, Dhar BR. Impact of petroleum versus bio-based nano/microplastics on fermentative biohydrogen production from sludge. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024; 94:959-970. [DOI: 10.1016/j.ijhydene.2024.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Liu K, Li W, Zhang D, Lv L, Zhang G. Positive effects of appropriate micro-aeration on landfill stabilization: Mitigating ammonia and VFAs accumulation. BIORESOURCE TECHNOLOGY 2024; 413:131483. [PMID: 39270988 DOI: 10.1016/j.biortech.2024.131483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The slow stabilization process of landfill had brought obstacles to urbanization. The paper investigated the efficacy and mechanism of micro-aeration intensity for landfill stabilization. The micro-aeration intensity of 0.05 L/(h·kg) resulted in a significant increase of volatile fatty acids (VFAs) in the hydrolysis stage, and the NH4+-N concentration was reduced by 22.1 %. At the end of landfill, VFAs were rapidly degraded and organic matter was reduced from 36 % to 16 %, which was 55.5 % more efficient than the control group. In addition, the community succession and structure of bacteria and archaea were analyzed. The micro-aeration intensity of 0.05 L/(h·kg) increased the abundance of hydrolyzing functional bacteria such as Pseudomonas and Bacillus, and allowed methanogenic bacteria such as Methanobacterium and Methanothrix to gradually establish oxygen tolerance in the microaerobic environment. The appropriate micro-aeration intensity can accelerate the stabilization process of landfill, which has environmental and economic benefits.
Collapse
Affiliation(s)
- Kaili Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China; College of Environmental Engineering, Tianjin University, Tianjin 300350, PR China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin 150086, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
5
|
Ye R, Huo W, Shao Y, Wang H, Lu W, Zhang H. Fungal community diversity and their contribution to nitrogen cycling in in-situ aerated landfills: Insights from field and laboratory studies. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 179:1-11. [PMID: 38442433 DOI: 10.1016/j.wasman.2024.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
The application of in-situ aeration technology in landfills has been reported to promote fungal growth, but the community diversity and function of fungi in the aerated landfill system remain unknown. This study firstly investigated an in-situ aerated remediation landfill site to characterize the fungal community diversity in refuse. And to further reveal the fungal involvement in the nitrogen cycling system, laboratory-scale simulated aerated landfill reactors were then constructed. The results in the aerated landfill site showed a significant correlation between fungal community structure and ammonia nitrogen content in the refuse. Dominant fungi in the fungal community included commonly found environmental fungi such as Fusarium, Aspergillus, Gibberella, as well as unique fungi in the aerated system like Chaetomium. In the laboratory-scale aerated landfill simulation experiments, the fungal system was constructed using bacterial inhibitor, and nitrogen balance analysis confirmed the significant role of fungal nitrification in the nitrogen cycling process. When ammonia nitrogen was not readily available, fungi converted organic nitrogen to nitrate, serving as the main nitrification mechanism in the system, with a contribution rate ranging from 62.71 % to 100 % of total nitrification. However, when ammonia nitrogen was present in the system, autotrophic nitrification became the main mechanism, and the contribution of fungal nitrification to total nitrification was only 15.96 %. Additionally, fungi were capable of directly utilizing nitrite for nitrate production with a rate of 4.65 mg L-1 d-1. This research article contributes to the understanding of the importance of fungi in the aerated landfill systems, filling a gap in knowledge.
Collapse
Affiliation(s)
- Rong Ye
- School of Environment, Tsinghua University, Beijing 100084, China; Nanjing Institute of Environment Sciences, Ministry of Ecology & Environment, Nanjing 210042, China
| | - Weizhong Huo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuchao Shao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongtao Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Houhu Zhang
- Nanjing Institute of Environment Sciences, Ministry of Ecology & Environment, Nanjing 210042, China
| |
Collapse
|