1
|
Mahmoud SELME, Abdel-Fattah TM, Mahmoud ME, Díaz E. Efficient removal performance of polystyrene microplastics from strongly acidic solutions by two functionalized nanosized biochars derived from low-cost sustainable sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178892. [PMID: 40020576 DOI: 10.1016/j.scitotenv.2025.178892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/15/2025] [Accepted: 02/16/2025] [Indexed: 03/03/2025]
Abstract
Microplastic pollution in aquatic systems and other environments has garnered significant concern due to its persistence, widespread environmental migration, and detrimental impact on entire ecosystems. Such pollution type poses severe threats to human life quality, as well as flora and fauna. In response to this pressing global issue, the current research explores a simple, sustainable, and cost-effective solution by employing two newly modified nanobiochar materials with oxalic acid, for the adsorptive removing of polystyrene microplastics (PSMPs) from aquatic systems. The two nanobiochars were derived from sustainable and low-cost feedstocks, specifically pineapple and artichoke wastes via pyrolysis at 300 °C and 350 °C, yielding NBP and NBA, respectively. These were subsequently modified with oxalic acid (OA) to create OA@NBP and OA@NBA nanobiosorbents. The EDX analysis confirmed the primary elemental composition of carbon, oxygen, nitrogen, calcium, and magnesium. TEM analysis revealed distinct differences in particle size and morphology of OA@NBA which displayed small particles ranging from 9.81 to 16.15 nm, while OA@NBP exhibited larger particles with size ranging from 68.86 to 105.12 nm, highlighting their structural differences. OA@NBP and OA@NBA nanobiosorbents were evaluated in PSMPs removing from aquatic systems providing the optimum conditions 30-50 mg nanobiosorbent, 40 min time and pH 2.0. The adsorption and binding mechanisms were best fitted to pseudo-second-order kinetics and Langmuir-Freundlich models. Thermodynamic analysis revealed that the adsorption process was non-spontaneous and endothermic. The loaded PSMPs on OA@NBA and OA@NBP nanobiosorbents were successfully regenerated and successively used to remove PSMPs with 86.8 % and 89.5 %, respectively, after the first regeneration step. Additionally, the two nanobiosorbents demonstrated excellent PSMPs removal efficiencies in simulated seawater samples adjusted to pH 2.0, achieving removal rates of 93.4 % (OA@NBA) and 87.4 % (OA@NBP). Therefore, the characterized PSMPs removal performance at pH 2.0 can afford a good avenue for potential application of the two explored nanobiosorbents in effective removal of PSMPs pollutant from other acidic industrial wastewater matrices.
Collapse
Affiliation(s)
- Safe ELdeen M E Mahmoud
- Department of Chemical and Environmental Engineering, University of Oviedo, Faculty of Chemistry, Julián Clavería s/n, 33006 Oviedo, Spain; Chemical and Petrochemical Engineering Department, College of Engineering and Technology, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt
| | - Tarek M Abdel-Fattah
- Department of Molecular Biology and Chemistry and Applied Research Center Thomas Jefferson National Accelerator, Facility, Christopher Newport University, Newport News, VA 23606, USA
| | - Mohamed E Mahmoud
- Faculty of Sciences, Chemistry Department, Alexandria University, Alexandria, Egypt.
| | - Eva Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, Faculty of Chemistry, Julián Clavería s/n, 33006 Oviedo, Spain
| |
Collapse
|
2
|
Armanu EG, Bertoldi S, Chrzanowski Ł, Volf I, Heipieper HJ, Eberlein C. Benefits of Immobilized Bacteria in Bioremediation of Sites Contaminated with Toxic Organic Compounds. Microorganisms 2025; 13:155. [PMID: 39858923 PMCID: PMC11768004 DOI: 10.3390/microorganisms13010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Although bioremediation is considered the most environmentally friendly and sustainable technique for remediating contaminated soil and water, it is most effective when combined with physicochemical methods, which allow for the preliminary removal of large quantities of pollutants. This allows microorganisms to efficiently eliminate the remaining contaminants. In addition to requiring the necessary genes and degradation pathways for specific substrates, as well as tolerance to adverse environmental conditions, microorganisms may perform below expectations. One typical reason for this is the high toxicity of xenobiotics present in large concentrations, stemming from the vulnerability of bacteria introduced to a contaminated site. This is especially true for planktonic bacteria, whereas bacteria within biofilms or microcolonies have significant advantages over their planktonic counterparts. A physical matrix is essential for the formation, maintenance, and survival of bacterial biofilms. By providing such a matrix for bacterial immobilization, the formation of biofilms can be facilitated and accelerated. Therefore, bioremediation combined with bacterial immobilization offers a comprehensive solution for environmental cleanup by harnessing the specialized metabolic activities of microorganisms while ensuring their retention and efficacy at target sites. In many cases, such bioremediation can also eliminate the need for physicochemical methods that are otherwise required to initially reduce contaminant concentrations. Then, it will be possible to use microorganisms for the remediation of higher concentrations of xenobiotics, significantly reducing costs while maintaining a rapid rate of remediation processes. This review explores the benefits of bacterial immobilization, highlighting materials and processes for developing an optimal immobilization matrix. It focuses on the following four key areas: (i) the types of organic pollutants impacting environmental and human health, (ii) the bacterial strains used in bioremediation processes, (iii) the types and benefits of immobilization, and (iv) the immobilization of bacterial cells on various carriers for targeted pollutant degradation.
Collapse
Affiliation(s)
- Emanuel Gheorghita Armanu
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (E.G.A.); (S.B.); (C.E.)
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73A Prof. D. Mangeron Blvd., 700050 Iasi, Romania
| | - Simone Bertoldi
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (E.G.A.); (S.B.); (C.E.)
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Irina Volf
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73A Prof. D. Mangeron Blvd., 700050 Iasi, Romania
| | - Hermann J. Heipieper
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (E.G.A.); (S.B.); (C.E.)
| | - Christian Eberlein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (E.G.A.); (S.B.); (C.E.)
| |
Collapse
|
3
|
Burdová H, Polanská Nebeská D, Kwoczynski Z, Žižková L, Neubertová V, Snow J, Pilnaj D, Baka M, Al Souki KS. A comprehensive evaluation of the environmental and health risks associated with the potential utilization of chars produced from tires, electro-waste plastics and biomass. ENVIRONMENTAL RESEARCH 2025; 264:120390. [PMID: 39571709 DOI: 10.1016/j.envres.2024.120390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/25/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
A variety of waste materials are currently being processed using pyrolysis with the objective of valorization, transformation, and conversion into valuable raw materials that can be further utilized. In this work, three different types of char produced from pine sawdust, waste tires and waste from the flat panel display fraction of electrical and electronic equipment were studied. For selection of suitable application, it is necessary to characterize them. The majority of studies focus only on the analysis of the composition and properties of the resulting chars. Nevertheless, the most prevalent utilization of char is in the environment as a soil amendment or adsorbent for the removal of pollutants from water, soil, and air. For this reason, this work incorporated a comprehensive characterization, including an ecotoxicological assessment of the environmental impacts and health risks during their handling/storage. Based on the obtained results and the legislation, a suitable and safe application of the chars was recommended. As presumed, the tested char samples varied in their composition and properties. Biochar from pine sawdust possessed suitable surface properties to be used as a potentially effective adsorbent for water treatment. However, it demonstrated increased ecotoxicity against aquatic organisms, prompting its recommendation for soil application. Waste tires char can be safely used only as an absorbent for air purification due to its high ecotoxicity for aquatic organisms and high PAHs concentration, which disables its soil application. It is inadvisable to utilize char produced from electro-waste plastics in the environment due to its toxic composition, high volatile organic compounds and PAHs content and ecotoxicity. This study confirmed the importance and necessity of using multiple ecotoxicological tests involving different groups of organisms in the characterization of chars (also biochar) to exclude potential negative impacts of their further application.
Collapse
Affiliation(s)
- Hana Burdová
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic; Faculty of Mechanical Engineering, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3334/7, 40096, Ústí nad Labem, Czech Republic
| | - Diana Polanská Nebeská
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic.
| | - Zdenka Kwoczynski
- ORLEN UniCRE a.s, Revoluční 1521/84, 40001, Ústí nad Labem, Czech Republic; Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic
| | - Lenka Žižková
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic
| | - Viktorie Neubertová
- Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic
| | - Jan Snow
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic; ORLEN UniCRE a.s, Revoluční 1521/84, 40001, Ústí nad Labem, Czech Republic
| | - Dominik Pilnaj
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic; Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627, Prague, Czech Republic
| | - Michal Baka
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 16628, Prague, Czech Republic
| | - Karim Suhail Al Souki
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic
| |
Collapse
|
4
|
Michenzi C, Myers SH, Chiarotto I. Bisphenol A in Water Systems: Risks to Polycystic Ovary Syndrome and Biochar-Based Adsorption Remediation: A Review. Chem Biodivers 2024; 21:e202401037. [PMID: 39087919 PMCID: PMC11644113 DOI: 10.1002/cbdv.202401037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/02/2024]
Abstract
Access to clean and safe water sadly remains an issue in the 21st century. Water reservoirs, whether groundwater or surface water, are routinely contaminated by various harmful Emerging Contaminants (ECs). One of most prevalent pollutants among these pollutants is Bisphenol A, which is classified as an Endocrine Disrupting Compound (EDC). This substance adversely interferes with the endocrine system, primarily by mimicking estrogen, and has been considered a potential contributor to Polycystic Ovary Syndrome (PCOS) with 82.70 % of 1,391 women studied showing a positive correlation between BPA exposure and PCOS. PCOS is currently the most prevalent endocrine disorder affecting women of reproductive age; however, its pathogenesis remains unclear, complicating diagnosis and subsequently patient care. In this review, these topics are thoroughly examined, with particular emphasis on biochar, a new promising method for large-scale water purification. Biochar, derived from various organic waste materials, has emerged as a cost-effective substance with remarkable adsorption properties achieving up to 88 % efficiency over four cycles of reuse, similar to that of activated carbon. This review interrogates the suitability of biochar for counteracting the issue of EDC pollutants.
Collapse
Affiliation(s)
- Cinzia Michenzi
- Department of Basic and Applied Sciences for Engineering (SBAI)Sapienza University of RomeVia Castro Laurenziano, 700161RomeItaly
| | | | - Isabella Chiarotto
- Department of Basic and Applied Sciences for Engineering (SBAI)Sapienza University of RomeVia Castro Laurenziano, 700161RomeItaly
| |
Collapse
|
5
|
Alnaser IA. Tailoring the mechanical strength and corrosion resistance of aluminum matrix composites through biochar reinforcement at varied weight percentages. Sci Rep 2024; 14:19875. [PMID: 39191848 DOI: 10.1038/s41598-024-70889-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
This study introduces an innovative approach to fabricate aluminum matrix composites strengthened with biochar, derived from renewable biomass sources. A systematic investigation of varying biochar weight percentages (0, 2.5, 5, 7.5, and 10 wt%) reveals substantial improvements in mechanical properties and corrosion resistance. Mechanical assessments, including compressive strength and hardness, demonstrate a significant enhancement in mechanical strength with biochar incorporation. In this study, it was discovered that the composite with 7.5 wt% biochar exhibits an optimal balance, displaying an 8.83% increase in compressive strength and a 15.15% rise in hardness compared to the base aluminum matrix. The study further evaluates corrosion behavior through electrochemical analyses and immersion tests in 3.5% NaCl corrosive environments, highlighting the superior corrosion resistance of biochar-reinforced composites. Corrosion rates decrease by 73% in the composite with 10 wt% biochar for the 24 h immersion time, affirming its protective barrier against corrosive agents. This research provides quantitative insights into tailoring mechanical and corrosion properties in aluminum matrix composites through biochar reinforcement, offering a promising avenue for sustainable material development. The resulting materials exhibit not only an 8.83% increase in mechanical strength but also a 73% reduction in corrosion rates, offering valuable uses in industries that need strong, eco-friendly solutions.
Collapse
Affiliation(s)
- Ibrahim A Alnaser
- Mechanical Engineering Department, College of Engineering, King Saud University, 11421, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Singh R, Naik DV, Dutta RK, Kanaujia PK. High surface area biochar for the removal of naphthenic acids from environmental water and industrial wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34127-7. [PMID: 38963622 DOI: 10.1007/s11356-024-34127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
This study reports the production of biochar adsorbents from two major crop residues (i.e., rice and wheat straw) to remove naphthenic acids from water. The alkali treatment approach was used for biochar activation that resulted in a tremendous increase in their surface area, i.e., up to 2252 and 2314 m2/g, respectively, for rice and wheat straw biochars. Benzoic acid was used as a model compound to optimize critical adsorption parameters. Its maximum monolayer adsorption capacity of 459.55 and 357.64 mg/g was achieved for activated rice and wheat straw biochars. The adsorption of benzoic acid was exothermic (∆H° = - 7.06 and - 3.89 kJ/mol) and identified possibly as physisorption (Gibbs free energy ranges 3.5-4.0 kJ/mol). The kinetic study suggested that adsorption follows pseudo-second-order kinetics with qe2 for rice straw and wheat straw-derived adsorbents at 200 and 194 mg/g, respectively. As adsorbent, the recyclability of activated biochars was noticed with no significant loss in their efficiency for up to ten successive regeneration cycles. The adsorption results were validated using a commercial naphthenic acid mixture-spiked river water and paper/pulp industrial effluent. The activated rice and wheat straw biochars exhibited excellent adsorption efficiency of 130.3 and 74.6 mg/g, respectively. The naphthenic acid adsorption on biochar surface was due to various interactions, i.e., weak van der Waal's, pore filling, π-π stacking, and ionic interactions. This study offers a cost-effective and eco-friendly approach to valorizing agricultural residues for pollutant removal from industrial wastewater, including petroleum refineries.
Collapse
Affiliation(s)
- Raghuvir Singh
- Analytical Sciences Division, Indian Institute of Petroleum, Council of Scientific and Industrial Research, Haridwar Road, Dehradun, 248005, Uttarakhand, India
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Desavath V Naik
- Distillate and Heavy Oil Processing Division, Indian Institute of Petroleum, Council of Scientific and Industrial Research, Haridwar Road, Dehradun, 248005, Uttarakhand, India
| | - Raj K Dutta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Pankaj K Kanaujia
- Analytical Sciences Division, Indian Institute of Petroleum, Council of Scientific and Industrial Research, Haridwar Road, Dehradun, 248005, Uttarakhand, India.
| |
Collapse
|
7
|
Kumar V, Sharma N, Panneerselvam B, Dasarahally Huligowda LK, Umesh M, Gupta M, Muzammil K, Zahrani Y, Malmutheibi M. Lignocellulosic biomass for biochar production: A green initiative on biowaste conversion for pharmaceutical and other emerging pollutant removal. CHEMOSPHERE 2024; 360:142312. [PMID: 38761824 DOI: 10.1016/j.chemosphere.2024.142312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/25/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Lignocellulosic waste generation and their improper disposal has accelerated the problems associated with increased greenhouse gas emissions and associated environmental pollution. Constructive ways to manage and mitigate the pollution associated with lignocellulosic waste has propelled the research on biochar production using lignocellulose-based substrates. The sustainability of various biochar production technologies in employing lignocellulosic biomass as feedstock for biochar production not only aids in the lignocellulosic biomass valorization but also helps in carbon neutralization and carbon utilization. Functionalization of biochar through various physicochemical methods helps in improving their functional properties majorly by reducing the size of the biochar particles to nanoscale and modifying their surface properties. The usage of engineered biochar as nano adsorbents for environmental applications like dye absorption, removal of organic pollutants and endocrine disrupting compounds from wastewater has been the thrust areas of research in the past few decades. This review presents a comprehensive outlook on the up-to-date research findings related to the production and engineering of biochar from lignocellulosic biomass and their applications in environmental remediation especially with respect to wastewater treatment. Further a detailed discussion on various biochar activation methods and the future scope of biochar research is presented in this review work.
Collapse
Affiliation(s)
- Vinay Kumar
- Biomaterials and Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India.
| | - Neha Sharma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India
| | - Balamurugan Panneerselvam
- Center of Excellence in Interdisciplinary Research for Sustainable Development, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Community Medicine, Saveetha Medical College, SIMATS, Chennai, 602105, India
| | | | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, 560029, Karnataka, India
| | - Manish Gupta
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - Yousef Zahrani
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - Musa Malmutheibi
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| |
Collapse
|
8
|
Alam SN, Singh B, Guldhe A, Raghuvanshi S, Sangwan KS. Sustainable valorization of macroalgae residual biomass, optimization of pyrolysis parameters and life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170797. [PMID: 38342457 DOI: 10.1016/j.scitotenv.2024.170797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
The major challenges for the current climate change issue are an increase in global energy demand, a limited supply of fossil fuels, and increasing carbon footprints from fossil fuels, which have necessitated the exploration of sustainable alternatives to fossil fuels. Biorefineries offer a promising path to sustainable fuel production, converting biomass into biofuels using diverse technologies. Aquatic biomass, such as macroalgae in this context, represents an abundant and renewable biomass resource that can be cultivated from water bodies without competing with traditional agricultural land. Despite this, the potential of macroalgae for biofuel production remains largely untapped, with very limited studies addressing their viability and efficiency. This study investigates the efficient conversion of unexplored macroalgae biomass through a biorefinery process that involves lipid extraction to produce biodiesel, along with the production of biochar and bio-oil from the pyrolysis of residual biomass. To improve the effectiveness and overall performance of the pyrolysis system, Response Surface Methodology (RSM) was utilized through a Box-Behnken design to systematically investigate how alterations in temperature, reaction time, and catalyst concentration influence the production of bio-oil and biochar to maximize their yields. The results showed the highest bio-oil yield achieved to be 36 %, while the highest biochar yield reached 45 %. The integration of Life Cycle Assessment (LCA) in the study helps to assess carbon emission and environmental burdens and identify potential areas for optimization, such as resource efficiency, waste management, and energy utilization. The LCA results contribute to the identification of potential environmental hotspots and guide the development of strategies to optimize the overall sustainability of the biofuel production process. The LCA results indicate that the solvent (chloroform) used in transesterification contributes significantly to greenhouse gas emissions and climate change impacts. Therefore, it is crucial to explore alternative, safe solvents that can mitigate the environmental impacts of transesterification.
Collapse
Affiliation(s)
- Shahrukh Nawaj Alam
- Department of Environmental Sciences, Central University of Jharkhand, Cheri-Manatu, Ranchi 835 222, India
| | - Bhaskar Singh
- Department of Environmental Sciences, Central University of Jharkhand, Cheri-Manatu, Ranchi 835 222, India.
| | - Abhishek Guldhe
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, India.
| | - Smita Raghuvanshi
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Rajasthan, India
| | - Kuldip Singh Sangwan
- Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Rajasthan, India
| |
Collapse
|
9
|
Chen X, Beatty DN, Matar MG, Cai H, Srubar WV. Algal Biochar-Metal Nanocomposite Particles Tailor the Hydration Kinetics and Compressive Strength of Portland Cement Paste. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:3585-3594. [PMID: 38456189 PMCID: PMC10916760 DOI: 10.1021/acssuschemeng.3c06592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 03/09/2024]
Abstract
Biochar can improve the mechanical properties of portland cement paste and concrete. In this work, we produced algal biochar-zinc (biochar-Zn) and algal biochar-calcium (biochar-Ca) nanocomposite particles and studied their effect on the hydration kinetics and compressive strength of cement paste. Results show that 3 wt % biochar-Zn delayed peak heat evolution during cement hydration from 8.3 to 10.0 h, while 3 wt % addition of biochar-Ca induced a minor acceleration of peak heat from 8.3 to 8.2 h. Both biochar-Zn and biochar-Ca nanocomposite particles increased the compressive strength of cement paste at 28 days by 22.6 and 17.0%, respectively. Data substantiate that retardation or minor acceleration of the reaction kinetics was due exclusively to the presence of Zn and Ca phases, respectively, while the enhanced strength was attributed to a nucleation effect induced by such phases and the internal curing effect of biochar.
Collapse
Affiliation(s)
- Xu Chen
- Department
of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 1111 Engineering Drive ECOT 441
UCB 428, Boulder, Colorado 80309, United States
- School
of Civil and Hydraulic Engineering, Huazhong
University of Science and Technology, Wuhan, Hubei 430074, China
| | - Danielle N. Beatty
- Materials
Science and Engineering Program, University
of Colorado Boulder, 4001 Discovery Drive, UCB 027, Boulder, Colorado 80303, United States
| | - Mohammad G. Matar
- Department
of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 1111 Engineering Drive ECOT 441
UCB 428, Boulder, Colorado 80309, United States
| | - Huanchun Cai
- School
of Civil and Hydraulic Engineering, Huazhong
University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wil V. Srubar
- Department
of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 1111 Engineering Drive ECOT 441
UCB 428, Boulder, Colorado 80309, United States
- Materials
Science and Engineering Program, University
of Colorado Boulder, 4001 Discovery Drive, UCB 027, Boulder, Colorado 80303, United States
| |
Collapse
|
10
|
Cervantes-Díaz A, Alonso-Prados E, Alonso-Prados JL, Sandín-España P. Assessing the effect of organic amendments on the degradation of profoxydim in paddy soils: Kinetic modeling and identification of degradation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169072. [PMID: 38048997 DOI: 10.1016/j.scitotenv.2023.169072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The fate and behavior of herbicides can be altered in an unpredictable way when organic amendments are added to soil as a beneficial management tool. The objective of this work was to investigate the effect exerted by the addition of two different organic amendments (alperujo compost and biochar) to soil in the degradation of one of the most relevant new generation rice herbicides, profoxydim. In unamended soils, the degradation of profoxydim was quite fast and was governed by both chemical (DT50steril soil = from 1.52 to 9.21 days) and microbial (DT50nonsterile soil = from 0.47 to 0.53 days) processes. Alperujo- and biochar-amended soils significantly increased the persistence of the herbicide in both soils, especially in the presence of biochar, due to the high capacity absorption of this amendment, increasing DT90 from 1.92 to 3.54 days for DT90unamended to 41.02-48.41 days for DT90biochar amended. Different kinetics models applied to fit the observed dissipation datasets showed that a HS biphasic model fits well with the dissipation of profoxydim in amended and unamended soils. For the first time, five degradation products (DPs) were identified by HPLC-QTOF-MS/MS in soil and a degradation pathway was described. Main DP was generated via oxidation of the sulfur atom to give rise to the corresponding sulfoxide derivative, with this DP being more persistent than the active substance. These outcomes can be very useful for the assessment of the environmental risk associated with the use of profoxydim in rice crops and the application of organic amendments as potential measures for minimizing the risk of contamination of natural water resources.
Collapse
Affiliation(s)
- A Cervantes-Díaz
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - E Alonso-Prados
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - J L Alonso-Prados
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - P Sandín-España
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain.
| |
Collapse
|
11
|
You X, Wang S, Chen J. Magnetic biochar accelerates microbial succession and enhances assimilatory nitrate reduction during pig manure composting. ENVIRONMENT INTERNATIONAL 2024; 184:108469. [PMID: 38324928 DOI: 10.1016/j.envint.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Biochar promotes microbial metabolic activities and reduces N2O on aerobic composting. However, the effects of magnetic biochar (MBC) on the microbial succession and N2O emissions during pig manure composting remain unclear. Herein, a 42-day composting experiment was conducted with five treatment regimes: pig manure without biochar (CK), 5 % pig manure-based biochar (5 % PBC), 2 % MBC (2 % MBC), 5 % MBC (5 % MBC) and 7.5 % MBC (7.5 % MBC)), to clarify the variation in functional microorganisms and genes associated with nitrogen and direct interspecies electron transfer via metagenomics. Fourier-transform infrared spectroscopy showed that MBC possessed more stable aromatic structures than pig manure-based biochar (PBC), indicating its greater potential for nitrous oxide reduction. MBC treatments were more effective in composting organic matter and improving the carbon/nitrogen ratio than PBC. The microbial composition during composting varied significantly, with the dominant phyla shifting from Firmicutes to Proteobacteria, Actinobacteria, and Bacteroidota. Network and hierarchical clustering analyses showed that the MBC treatment enhanced the interactions of dominant microbes (Proteobacteria and Bacteroidota) and accelerated the composting process. The biochar addition accelerated assimilatory nitrate reduction and slowed dissimilatory nitrate reduction and denitrification. The Mantel test demonstrated that magnetic biochar potentially helped regulate composting nutrients and affected functional nitrogen genes. These findings shed light on the role of MBC in mitigating greenhouse gas emissions during aerobic composting.
Collapse
Affiliation(s)
- Xinxin You
- Institute of Eco-environmental Sciences, Wenzhou Academy of Agricultural Sciences, Wenzhou 325006, PR China; Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Academy of Agricultural Sciences, Wenzhou 325006, PR China; The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, PR China.
| | - Sheng Wang
- Institute of Eco-environmental Sciences, Wenzhou Academy of Agricultural Sciences, Wenzhou 325006, PR China
| | - Junhui Chen
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, PR China
| |
Collapse
|
12
|
Sun L, Li M, Liu B, Li R, Deng H, Zhu X, Zhu X, Tsang DCW. Machine learning for municipal sludge recycling by thermochemical conversion towards sustainability. BIORESOURCE TECHNOLOGY 2024; 394:130254. [PMID: 38151207 DOI: 10.1016/j.biortech.2023.130254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/09/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
The sustainable disposal of high-moisture municipal sludge (MS) has received increasing attention. Thermochemical conversion technologies can be used to recycle MS into liquid/gas bio-fuel and value-added solid products. In this review, we compared energy recovery potential of common thermochemical technologies (i.e., incineration, pyrolysis, hydrothermal conversion) for MS disposal via statistical methods, which indicated that hydrothermal conversion had a great potential in achieving energy recovery from MS. The application of machine learning (ML) in MS recycling was discussed to decipher complex relationships among MS components, process parameters and physicochemical reactions. Comprehensive ML models should be developed considering successive reaction processes of thermochemical conversion in future studies. Furthermore, challenges and prospects were proposed to improve effectiveness of ML for energizing thermochemical conversion of MS regarding data collection and preprocessing, model optimization and interpretability. This review sheds light on mechanism exploration of MS thermochemical recycling by ML, and provide practical guidance for MS recycling.
Collapse
Affiliation(s)
- Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Mingxuan Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Bingyou Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruohong Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Huanzhong Deng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiefei Zhu
- School of Advanced Energy, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinzhe Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
13
|
Liu Y, Zhang X, Liu H. Removal of typical pollutant ciprofloxacin using iron-nitrogen co-doped modified corncob in the presence of hydrogen peroxide. RSC Adv 2023; 13:34335-34347. [PMID: 38024979 PMCID: PMC10664827 DOI: 10.1039/d3ra06437a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
Iron-nitrogen co-doped modified corncob (Fe-N-BC) was synthesized using a hydrothermal and calcination method. The material shows excellent oxidation performance and environmental friendliness. When the dosage of Fe-N-BC was 0.6 g L-1, the concentration of H2O2 was 12 mM and pH was 4, ciprofloxacin (CIP) was virtually totally eliminated in 240 min under Fe-N-BC/H2O2 conditions. The TOC removal efficiency was 54.6%, and the effects of various reaction parameters on the catalytic activity of Fe-N-BC were thoroughly assessed. Through electron paramagnetic resonance (EPR) analyses and free radical quenching experiments, it was established that the reactive oxygen species (˙OH, ˙O2-, 1O2) were crucial in the elimination of CIP. Furthermore, the degradation of CIP was accelerated by the synergistic interaction between the transition metal and PFRs. A thorough evaluation was conducted to assess the respective contributions of adsorption and catalytic oxidation in the system. The degradation mechanism of CIP was proposed under Fe-N-BC/H2O2 conditions. Meanwhile, the possible degradation intermediates and pathways were proposed, and the toxicity of the degradation products of CIP was also meticulously investigated in the study. These findings offered the elimination of CIP in water a theoretical foundation and technical support.
Collapse
Affiliation(s)
- Yuankun Liu
- Municipal Engineering Department, College of Civil Engineering and Architecture, Beijing University of Technology Beijing 100124 P. R. China +86-10-6739-1726 +86-10-6739-1726
| | - Xinxia Zhang
- Municipal Engineering Department, College of Civil Engineering and Architecture, Beijing University of Technology Beijing 100124 P. R. China +86-10-6739-1726 +86-10-6739-1726
| | - Hongrun Liu
- Municipal Engineering Department, College of Civil Engineering and Architecture, Beijing University of Technology Beijing 100124 P. R. China +86-10-6739-1726 +86-10-6739-1726
| |
Collapse
|