1
|
Takahashi JA, Melo JOF, de Araújo RLB, Pimenta LPS, Mazzinghy ACDC, Ramos ALCC, Silva VDM. Economic, nutritional, and innovative aspects of non-conventional Brazilian fruits in the international novel foods market. Food Res Int 2024; 197:115223. [PMID: 39593308 DOI: 10.1016/j.foodres.2024.115223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/29/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Recent advances in fruit research have reignited interest in the market of tropical and unconventional fruit varieties, leading to increased investment in this sector. Additionally, consumers are currently seeking healthier food options to maintain the nutritional integrity of their diets and maximize health benefits, which has driven the demand for novel fruits and a deeper understanding of existing varieties. Despite this growing interest, knowledge of the full potential and diversity of these fruits remains insufficient for key stakeholders to reconcile sustainable production with the promotion of healthier diets within the global context. In this context, many endemic fruits from countries renowned for their rich biodiversity, such as Brazil, are still not produced and consumed regularly. Focusing on nutritional value, the distinctive composition of Brazilian fruits offers numerous health benefits, including essential vitamins, minerals, antioxidants, and anti-inflammatory compounds. This review delves into the economic implications of the Brazilian fruit industry, highlighting its capacity to penetrate the global market for novel foods. The introduction of new features, such as new flavors and textures, presents an excellent opportunity for product differentiation and market expansion. Furthermore, it discusses the importance of developing the fruit industry to promote a circular economy, reduce food insecurity, and generate income. This development can bring substantial social, economic, and environmental benefits to various regions around the globe.
Collapse
Affiliation(s)
- Jacqueline A Takahashi
- Chemistry Department, ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Júlio O F Melo
- Department of Exact and Biological Sciences, Universidade Federal de São João Del-Rei, Rua Sétimo Moreira Martins, 188, CEP 35702-031 Sete Lagoas, MG, Brazil
| | - Raquel L B de Araújo
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Lúcia P S Pimenta
- Chemistry Department, ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Ana C do C Mazzinghy
- Department of Exact and Biological Sciences, Universidade Federal de São João Del-Rei, Rua Sétimo Moreira Martins, 188, CEP 35702-031 Sete Lagoas, MG, Brazil
| | - Ana L C C Ramos
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Viviane D M Silva
- Department of Exact and Biological Sciences, Universidade Federal de São João Del-Rei, Rua Sétimo Moreira Martins, 188, CEP 35702-031 Sete Lagoas, MG, Brazil
| |
Collapse
|
2
|
Lee A, Lan JCW, Jambrak AR, Chang JS, Lim JW, Khoo KS. Upcycling fruit waste into microalgae biotechnology: Perspective views and way forward. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100203. [PMID: 38633725 PMCID: PMC11021955 DOI: 10.1016/j.fochms.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Fruit and vegetable wastes are linked to the depletion of natural resources and can pose serious health and environmental risks (e.g. eutrophication, water and soil pollution, and GHG emissions) if improperly managed. Current waste management practices often fail to recover high-value compounds from fruit wastes. Among emerging valorization methods, the utilization of fruit wastes as a feedstock for microalgal biorefineries is a promising approach for achieving net zero waste and sustainable development goals. This is due to the ability of microalgae to efficiently sequester carbon dioxide through photosynthesis, utilize nutrients in wastewater, grow in facilities located on non-arable land, and produce several commercially valuable compounds with applications in food, biofuels, bioplastics, cosmetics, nutraceuticals, pharmaceutics, and various other industries. However, the application of microalgal biotechnology towards upcycling fruit wastes has yet to be implemented on the industrial scale due to several economic, technical, operational, and regulatory challenges. Here, we identify sources of fruit waste along the food supply chain, evaluate current and emerging fruit waste management practices, describe value-added compounds in fruit wastes, and review current methods of microalgal cultivation using fruit wastes as a fermentation medium. We also propose some novel strategies for the practical implementation of industrial microalgal biorefineries for upcycling fruit waste in the future.
Collapse
Affiliation(s)
- Alicia Lee
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kuan Shiong Khoo
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| |
Collapse
|
3
|
Girotto OS, Furlan OO, Moretti Junior RC, Goulart RDA, Baldi Junior E, Barbalho-Lamas C, Fornari Laurindo L, Barbalho SM. Effects of apples ( Malus domestica) and their derivatives on metabolic conditions related to inflammation and oxidative stress and an overview of by-products use in food processing. Crit Rev Food Sci Nutr 2024:1-32. [PMID: 39049560 DOI: 10.1080/10408398.2024.2372690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Apple (Malus domestica) is the third most produced fruit worldwide. It is a well-known source of bioactive compounds mainly represented by hydroxycinnamic acids, flavan-3-ols, dihydrochalcones, dehydroascorbic acid, carotenoids, chlorogenic acid, epicatechin, and phloridzin. Due to the lack of a recent evaluation of the clinical trials associated with apple consumption, this review investigated the effects of this fruit on metabolic conditions related to inflammation and oxidative stress and reviewed the applications of apple waste on food products. Thirty-three studies showed that apples or its derivatives exhibit anti-inflammatory and antioxidant actions, improve blood pressure, body fat, insulin resistance, dyslipidemia, and reduce cardiovascular risks. Apples have a great economic impact due to its several applications in the food industry and as a food supplement since it has impressive nutritional value. Dietary fiber from the fruit pomace can be used as a substitute for fat in food products or as an improver of fiber content in meat products. It can also be used in bakery and confectionary products or be fermented to produce alcohol. Pomace phytocompounds can also be isolated and applied as antioxidants in food products. The potential for the use of apples and by-products in the food industry can reduce environmental damage.
Collapse
Affiliation(s)
- Otávio Simões Girotto
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | - Otávio Oliveira Furlan
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | | | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Edgar Baldi Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Caroline Barbalho-Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, SP, Brazil
| | - Sandra M Barbalho
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
- School of Food and Technonolgy of Marilia (FATEC), São Paulo, Brazil
| |
Collapse
|