1
|
Liu D, Song G, Liu L, Madadi M, Li C, Hu W, Zhang Y, Liu Z, Sun C, Sun F. Enhanced Enzymatic Hydrolysis of Tobacco Stalk via Simultaneous Deconstruction and Modification through Triton X-100-Mediated Organosolv Pretreatment. CHEMSUSCHEM 2025:e202500197. [PMID: 40032800 DOI: 10.1002/cssc.202500197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
Tobacco stalks (TS) present substantial potential for biofuel and biochemical production; however, their complex lignin structures and tightly bound carbohydrates pose significant challenges for enzymatic hydrolysis due to high recalcitrance. This study explores Triton-X 100-mediated 1,4-butanediol combined with AlCl3 pretreatment for TS fractionation towards improving enzymatic hydrolysis. Optimized pretreatment conditions achieved a significant removal of 87.8 % of hemicellulose and 81.0 % of lignin while maintaining a high cellulose retention of 90.1 %. Subsequently, the pretreated biomass recorded 91.2 % glucose yield after enzymatic hydrolysis at 10 % w/w solid with 12 FPU/g enzyme loadings, substantially outperforming controls. The presence of Triton-X 100 in pretreatment reduced enzyme requirements by up to 33.3 %. Structural characterization of the pretreated TS indicated effective disruption of lignin-carbohydrate complexes and an increase in biomass porosity by 1.2-2.3 folds, contributing to improved cellulose accessibility and enzymatic hydrolysis efficiency. Moreover, structural characterization of lignin revealed that Triton-X 100 grafted onto lignin by etherification, yielding a 21 % reduction in phenolic hydroxyl content and enhancing surface negative charge. These modifications effectively weaken both hydrogen bonding and electrostatic interactions between lignin and cellulase, thereby improving enzymatic hydrolysis efficiency. Overall, the proposed pretreatment presents a promising strategy for efficient fractionation and hydrolysis of TS biomass.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Liang Liu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Caiyue Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Wenhao Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yao Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zicheng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Ghahri S, Park BD. Amination and crosslinking of acetone-fractionated hardwood kraft lignin using different amines and aldehydes for sustainable bio-based wood adhesives. BIORESOURCE TECHNOLOGY 2024; 399:130645. [PMID: 38554759 DOI: 10.1016/j.biortech.2024.130645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Hardwood kraft lignin from the pulping industry is burned or discarded. Its valorization was conducted by subjecting fractionation, amination with ethylenediamine, diethylenetriamine, and monoethanolamine, and crosslinking with formaldehyde or glyoxal to obtain bio-based wood adhesives. Acetone-soluble and insoluble hardwood kraft lignin were prepared and subjected to amination and then crosslinking. Fourier transform infrared, 13C NMR, 15N NMR, and X-ray photoelectron spectroscopy results revealed successful amination with amide, imine, and ether bonds and crosslinking of all samples. Hardwood kraft lignin aminated with diethylenetriamine/ethylenediamine and crosslinked using glyoxal exhibited excellent results in comparison with samples crosslinked using formaldehyde. Acetone-insoluble hardwood kraft lignin aminated and crosslinked using diethylenetriamine and formaldehyde, respectively, exhibited excellent adhesion strength with plywood, satisfying the requirements of the Korean standards. The amination and crosslinking of industrial waste hardwood kraft lignin constitute a beneficial valorization method.
Collapse
Affiliation(s)
- Saman Ghahri
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Dae Park
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|