1
|
Dai B, Zhou J, Wang Z, Yang Y, Wang S, Yang S, Xia S. Utilizing waste-derived carbon source for partial denitrification-anammox process: Wastewater- and sludge-derived organics. ENVIRONMENTAL RESEARCH 2025; 280:121972. [PMID: 40436199 DOI: 10.1016/j.envres.2025.121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/14/2025] [Accepted: 05/25/2025] [Indexed: 06/01/2025]
Abstract
The partial denitrification-anammox (PDA) process is a promising and sustainable technology for nitrogen removal in wastewater treatment. It is well-suited for mainstream nitrogen removal from municipal wastewater, polishing of anammox for ammonia-rich wastewater treatment, and simultaneous treatment of nitrate and ammonia containing wastewater. While the PDA process reduces external carbon source consumption by over 40 %, it still requires additional carbon input. Wastewater treatment systems inherently contain organics in both wastewater and sludge, but these sources are often inaccessible to denitrifiers. Efficient utilization of these organics is essential for advancing energy-efficient wastewater treatment. This review provides a comprehensive overview of recent advances in utilizing organics derived from wastewater and waste-sludge. Key developments in hydrolytic acidification and Fe-C micro-electrolysis are highlighted for enhancing the biodegradability and conversion of refractory organics. Strategies such as extended hydraulic retention time, functional microbial enrichment, enzymatic pretreatment, and microbial co-cultures are also discussed to improve readily biodegradable organics supply and nitrogen removal. This review further explores emerging applications of PDA process that leverage carbon sources from wastewater treatment systems. Future research should prioritize the efficient integration of these organics throughout PDA process and develop cost-effective methods to address by-products like ammonia-nitrogen. Moreover, a practical roadmap is proposed, outlining optimization of fermentation conditions, system integration, stability under real-world conditions, and techno-economic evaluations. This review aims to provide a comprehensive framework to unlock the full-scale application of PDA using waste-derived carbon, advancing toward carbon-neutral and cost-effective wastewater treatment.
Collapse
Affiliation(s)
- Ben Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zuobin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center of Dredging Technology and Equipment, Key Lab of Dredging Technology, CCCC, Shanghai, 200082, China
| | - Yifeng Yang
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai, 200092, China
| | - Sen Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Shaobo Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
2
|
Yang T, Gong X, Xu A, Wang B, Huang Z, Wang C, Gao D. Integrated evaluation for advanced removal of nitrate using novel solid carbon biochar/corncob/PHBV composite: Insight into electron transfer and metabolic pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138549. [PMID: 40359745 DOI: 10.1016/j.jhazmat.2025.138549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025]
Abstract
This study developed a novel Biochar/Corncob/PHBV (BCP) composite material, integrating the electron transfer capability of biochar, the cost-effectiveness of corncob, and the sustained carbon release performance of PHBV. The BCP system achieved a maximum nitrate removal efficiency of 97.3 %, significantly outperforming the single PHBV system (91.05 %), while effectively reducing nitrous oxide and other greenhouse gas emissions. It also demonstrated stable carbon release and enhanced electron transfer capabilities, contributing to a more sustainable denitrification process. The physical and chemical characterization of BCP confirmed that its superior performance is attributed to the uniformly distributed functional groups (e.g., CO and -COOH) on the surface and its porous structure, which facilitated electron transfer and microbial adhesion. Metagenomic and microbial analyses further revealed that BCP enriched functional genera such as Cellulomonas and Chryseobacterium and significantly increased the abundance of key functional genes related to nitrate reduction (e.g., NaR and NiR), enhancing organic matter decomposition and microbial nitrogen transformation. Beyond improving nitrate removal efficiency compared to PHBV, the BCP material offers practical engineering value by addressing carbon source limitations in long-term wastewater treatment applications. Its enhanced electron transfer and microbial enrichment suggest strong potential for application in constructed wetlands, biofilters, and other decentralized wastewater treatment systems. The study demonstrates that the BCP composite is not only a viable alternative to traditional PHBV but also a cost-effective and environmentally friendly material with broad applicability in nitrogen pollution control.
Collapse
Affiliation(s)
- Tianfu Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiaofei Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Boyuan Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zheng Huang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chuchu Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|