1
|
Chen Z, Zhang Z, Guo X, Memon K, Panhwar F, Wang M, Cao Y, Zhao G. Sensing Cell Membrane Biophysical Properties for Detection of High Quality Human Oocytes. ACS Sens 2019; 4:192-199. [PMID: 30584760 DOI: 10.1021/acssensors.8b01215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oocyte quality plays a crucial role in the early development and implantation of the embryos, and consequently has a profound impact on the accomplishment of assisted reproductive technology (ART). A simple and efficient method for detecting high-quality human oocytes is urgently needed. However, the clinically used morphological method is time-consuming, subjective, and inaccurate. To this end, we propose a practical and effective approach for detecting high-quality oocytes via on-chip measurement of the oocyte membrane permeability. We found that oocytes can be divided into two subpopulations (high-quality versus poor-quality oocytes) according to their membrane permeability differences, and as was further confirmed by subsequent in vitro fertilization (IVF) and development experiments (the blastocyst rates of high-quality and poor-quality oocytes were 60% and 0%, respectively). This approach shows great potentials in improving the success of ART, including both the fertilization and development rates, and thus it may have wide applications in the clinic.
Collapse
Affiliation(s)
- Zhongrong Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Anhui Medical University, Hefei 230022, Anhui, China
| | - Xiaojie Guo
- Hefei Blood Center, Hefei 230031, Anhui, China
| | - Kashan Memon
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Fazil Panhwar
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Meng Wang
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Anhui Medical University, Hefei 230022, Anhui, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| |
Collapse
|
2
|
Schaffhauser DF, Patti M, Goda T, Miyahara Y, Forster IC, Dittrich PS. An integrated field-effect microdevice for monitoring membrane transport in Xenopus laevis oocytes via lateral proton diffusion. PLoS One 2012; 7:e39238. [PMID: 22792166 PMCID: PMC3390327 DOI: 10.1371/journal.pone.0039238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/17/2012] [Indexed: 11/18/2022] Open
Abstract
An integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET) sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution. The proposed sensor mechanism was verified by heterologously expressing membrane transport proteins and recording changes in surface pH during application of the specific substrates. Experiments conducted on two families of phosphate-sodium cotransporters (SLC20 & SLC34) demonstrated that it is possible to detect phosphate transport for both electrogenic and electroneutral isoforms and distinguish between transport of different phosphate species. Furthermore, the transport activity of the proton/amino acid cotransporter PAT1 assayed using conventional whole cell electrophysiology correlated well with changes in surface pH, confirming the ability of the system to detect activity proportional to expression level.
Collapse
Affiliation(s)
| | - Monica Patti
- Institute for Physiology, University of Zurich, Zurich, Switzerland
| | - Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (PSD); (ICF); (YM)
| | - Ian Cameron Forster
- Institute for Physiology, University of Zurich, Zurich, Switzerland
- * E-mail: (PSD); (ICF); (YM)
| | - Petra Stephanie Dittrich
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (PSD); (ICF); (YM)
| |
Collapse
|
3
|
Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors. Proc Natl Acad Sci U S A 2010; 107:15340-4. [PMID: 20798064 DOI: 10.1073/pnas.1004334107] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This paper describes a highly sensitive and selective chemical sensor using living cells (Xenopus laevis oocytes) within a portable fluidic device. We constructed an odorant sensor whose sensitivity is a few parts per billion in solution and can simultaneously distinguish different types of chemicals that have only a slight difference in double bond isomerism or functional group such as -OH, -CHO and -C(=O)-. We developed a semiautomatic method to install cells to the fluidic device and achieved stable and reproducible odorant sensing. In addition, we found that the sensor worked for multiple-target chemicals and can be integrated with a robotic system without any noise reduction systems. Our developed sensor is compact and easy to replace in the system. We believe that the sensor can potentially be incorporated into a portable system for monitoring environmental and physical conditions.
Collapse
|
4
|
Dahan E, Bize V, Lehnert T, Horisberger JD, Gijs MAM. Rapid fluidic exchange microsystem for recording of fast ion channel kinetics in Xenopus oocytes. LAB ON A CHIP 2008; 8:1809-1818. [PMID: 18941679 DOI: 10.1039/b806404k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We present a new lab-on-a-chip system for electrophysiological measurements on Xenopus oocytes. Xenopus oocytes are widely used host cells in the field of pharmacological studies and drug development. We developed a novel non-invasive technique using immobilized non-devitellinized cells that replaces the traditional "two-electrode voltage-clamp" (TEVC) method. In particular, rapid fluidic exchange was implemented on-chip to allow recording of fast kinetic events of exogenous ion channels expressed in the cell membrane. Reducing fluidic exchange times of extracellular reagent solutions is a great challenge with these large millimetre-sized cells. Fluidic switching is obtained by shifting the laminar flow interface in a perfusion channel under the cell by means of integrated poly-dimethylsiloxane (PDMS) microvalves. Reagent solution exchange times down to 20 ms have been achieved. An on-chip purging system allows to perform complex pharmacological protocols, making the system suitable for screening of ion channel ligand libraries. The performance of the integrated rapid fluidic exchange system was demonstrated by investigating the self-inhibition of human epithelial sodium channels (ENaC). Our results show that the response time of this ion channel to a specific reactant is about an order of magnitude faster than could be estimated with the traditional TEVC technique.
Collapse
Affiliation(s)
- E Dahan
- Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|