1
|
Maghsoudian S, Sajjadi E, Hadavi N, Soltani M, Karami Z, Abed Hamadi Al Qushawi A, Akrami M, Kalantari F. Biomedical applications of peptide-gold nanoarchitectonics. Int J Pharm 2024; 667:124920. [PMID: 39515674 DOI: 10.1016/j.ijpharm.2024.124920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Gold nanoparticles (AuNPs) have become a focus of interest in biomedicine due to their unique properties. By attaching peptides to these nanoparticles (NPs), they can be utilized for a wide range of applications. Peptides, which are short chains of amino acids, can be customized for specific molecular interactions, making them ideal for delivering AuNPs to particular cells or tissues. One of the peptide-AuNP-based bio-nano technological approaches involves targeted drug delivery. Including peptides as targeting agents, these NPs can be designed to bind to specific cell receptors or biomarkers. This allows for the direct delivery of therapeutic agents to diseased cells while minimizing unwanted side effects, improving the effectiveness of treatments. Additionally, peptide-functionalized AuNPs (PAuNPs) are crucial for imaging and diagnostics. By functionalizing the NPs with peptides that bind to specific molecular targets, such as cancer biomarkers, these NPs can be used to visualize diseased tissues. This enables the early detection of diseases and helps in determining the severity of conditions for better diagnosis and treatment outcomes. Moreover, PAuNPs have displayed promising potential in photothermal therapy. Once PAuNPs uptake and penetrate target cancer cells effectively, these NPs generate heat when exposed to specific wavelengths of light, efficiently eliminating tumors while preserving healthy surrounding tissues. Therefore, in this paper, we systematically review the potential of PAuNPs in various biomedical applications, including therapy and diagnosis, providing a future perspective.
Collapse
Affiliation(s)
- Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmat Sajjadi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Hadavi
- Institute of Biomaterials, Tehran University and Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Mobina Soltani
- Institute of Biomaterials, Tehran University and Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Zahra Karami
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farid Kalantari
- SIE Department, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Biosensors for the detection of protein kinases: Recent progress and challenges. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Hu J, Li G. Recent Progress in Fluorescent Chemosensors for Protein Kinases. Chem Asian J 2022; 17:e202200182. [PMID: 35486328 DOI: 10.1002/asia.202200182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Indexed: 11/10/2022]
Abstract
Protein kinases are involved in almost all biological activities. The activities of different kinases reflect the normal or abnormal status of the human body. Therefore, detecting the activities of different kinases is important for disease diagnosis and drug discovery. Fluorescent probes offer opportunities for studying kinase behaviors at different times and spatial locations. In this review, we summarize different kinds of fluorescent chemosensors that have been used to detect the activities of many different kinases.
Collapse
Affiliation(s)
- Jun Hu
- Fujian Agriculture and Forestry University, College of Life Sciences, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, CHINA
| | - Gao Li
- Minjiang University, College of Material and Chemical Engineering, CHINA
| |
Collapse
|
4
|
Zhang G, Li M, Yu K, Chai H, Xu S, Xu T, Qu L, Zhang X. Two-Dimensional Metalloporphyrinic Framework Nanosheet-Based Dual-Mechanism-Driven Ratiometric Electrochemiluminescent Biosensing of Protein Kinase Activity. ACS APPLIED BIO MATERIALS 2021; 4:1616-1623. [PMID: 35014510 DOI: 10.1021/acsabm.0c01453] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A dual-mechanism-driven ratiometric electrochemiluminescent (ECL) biosensor was developed for the ultrasensitive detection of protein kinase activity, which was based on a competitive catalytic reaction and resonance energy transfer (RET) by assembling gold nanoparticles (GNPs) on two-dimensional (2D) porphyrinic metal-organic framework (MOF) nanosheets. In this work, an ECL catalytic reaction competing for dissolved O2 proceeded between 2D copper-based zinc porphyrinic MOF (Cu-TCPP(Zn)) nanosheets and luminol. Meanwhile, the cathodic ECL of singlet oxygen (1O2), derived from the electrocatalytic reaction of 2D Cu-TCPP(Zn), would be reduced by the assembled GNPs due to RET, while the anodic emission of luminol could be enhanced by GNPs with excellent electrocatalytic activity. With the detection of protein kinase A (PKA) as an example, this dual-mechanism-driven ECL biosensor exhibited a broad linear range (0.005-5.0 U mL-1) and a sensitive detection limit (0.0037 U mL-1). Compared with the traditional single-mechanism-driven sensing strategies, the developed dual-mechanism-driven ratiometric ECL biosensor may provide an effective method for the design of green and ultrasensitive ECL sensors.
Collapse
Affiliation(s)
- Guangyao Zhang
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Mengjie Li
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Kun Yu
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Huining Chai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Shenghao Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Lijun Qu
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xueji Zhang
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Liu X, Zhang Q, Knoll W, Liedberg B, Wang Y. Rational Design of Functional Peptide-Gold Hybrid Nanomaterials for Molecular Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000866. [PMID: 32743897 DOI: 10.1002/adma.202000866] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/21/2020] [Indexed: 05/12/2023]
Abstract
Gold nanoparticles (AuNPs) have been extensively used for decades in biosensing-related development due to outstanding optical properties. Peptides, as newly realized functional biomolecules, are promising candidates of replacing antibodies, receptors, and substrates for specific molecular interactions. Both peptides and AuNPs are robust and easily synthesized at relatively low cost. Hence, peptide-AuNP-based bio-nano-technological approaches have drawn increasing interest, especially in the field of molecular targeting, cell imaging, drug delivery, and therapy. Many excellent works in these areas have been reported: demonstrating novel ideas, exploring new targets, and facilitating advanced diagnostic and therapeutic technologies. Importantly, some of them also have been employed to address real practical problems, especially in remote and less privileged areas. This contribution focuses on the application of peptide-gold hybrid nanomaterials for various molecular interactions, especially in biosensing/diagnostics and cell targeting/imaging, as well as for the development of highly active antimicrobial/antifouling coating strategies. Rationally designed peptide-gold nanomaterials with functional properties are discussed along with future challenges and opportunities.
Collapse
Affiliation(s)
- Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Qingwen Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Wolfgang Knoll
- Austrian Institute of Technology, Giefinggasse 4, Vienna, 1210, Austria
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| |
Collapse
|
6
|
Determination of protein phosphorylation by polyacrylamide gel electrophoresis. J Microbiol 2019; 57:93-100. [DOI: 10.1007/s12275-019-9021-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 12/21/2022]
|
7
|
Wang Y, Li X, Waterhouse GIN, Zhou Y, Yin H, Ai S. Photoelectrochemical biosensor for protein kinase A detection based on carbon microspheres, peptide functionalized Au-ZIF-8 and TiO 2/g-C 3N 4. Talanta 2018; 196:197-203. [PMID: 30683351 DOI: 10.1016/j.talanta.2018.12.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
In this work, a novel and sensitive photoelectrochemical (PEC) strategy was designed for protein kinase A (PKA) detection, comprising carbon microsphere (CMS) modified ITO electrode, TiO2 as the phosphate group recognition material and graphite-carbon nitride (g-C3N4) as photoactive material. For the first time, gold nanoparticle decorated zeolitic imidazolate frameworks (Au-ZIF-8) was employed to fabricate biosensor for PKA activity assay with the function of substrate peptide immobilization and signal amplification. Firstly, substrate peptides were assembled on the Au-ZIF-8/CMS/ITO surface through the covalent bonding between the gold nanoparticles (AuNPs) and sulfydryl groups of the peptides. Then, in the presence of ATP, phosphorylation of the substrate peptide was achieved under PKA catalysis. Finally, TiO2-g-C3N4 composites were further modified on the electrode surface based on bonding between TiO2 and phosphate groups created via phosphorylation of the peptide (yielding TiO2-g-C3N4/P-peptide/Au-ZIF-8/CMS/ITO), which is different with our previous work by directly immobilizing g-C3N4 composite on electrode surface. The developed method showed a wide linear range from 0.05-50 U mL-1. The detection limit was 0.02 U mL-1 (S/N = 3). The constructed biosensor exhibited high detection specificity for PKA. In addition, the wide applicability of this biosensor was demonstrated by evaluating the inhibition ability of ellagic acid towards PKA.
Collapse
Affiliation(s)
- Yue Wang
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China
| | - Xue Li
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China
| | - Geoffrey I N Waterhouse
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China; School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China.
| | - Huanshun Yin
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China
| |
Collapse
|
8
|
Li XY, Feng FY, Zhou XD, Hu JM. Rational design of an anchoring peptide for high-efficiency and quantitative modification of peptides and DNA strands on gold nanoparticles. NANOSCALE 2018; 10:11491-11497. [PMID: 29888777 DOI: 10.1039/c8nr03565b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The pentapeptide Cys-Ala-Leu-Asn-Asn (CALNN) could stabilize gold nanoparticles (AuNPs), most of which serve as anchoring blocks for various bioanalyses by introducing recognition blocks. However, the typical conjugation strategy greatly suffers from excessive use of peptides, overnight incubation and consequently low efficiency. In this study, new design criteria for the efficacious anchor were established. In addition, a stable, instantaneous and effective modification of the anchoring peptide RRFPDD or its derivatives on AuNPs is first proposed for the first time. With low consumption of peptides (50 μM), the loading process could be realized in 100 seconds. The anchor RRFPDD also allowed for the quantitative adsorption of appended recognition blocks (e.g., peptides or DNAs), thus adjusting their proportions for better performance. In particular, the biological characteristics of those recognition blocks were fully retained. Furthermore, the anchor RRFPDD contributed to a time-saving and high-efficiency (85%) hydrolysis of peptide-capped AuNPs. Considering these advantages of the new anchor, a reliable assay for cardiac troponin I (cTnI) was developed with a detection limit as low as 0.45 ng mL-1, and also successfully applied in human serum samples.
Collapse
Affiliation(s)
- Xin-Yi Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| | | | | | | |
Collapse
|
9
|
Ma C, Lv X, Wang K, Jin S, Liu H, Wu K, Zeng W. Simple fluorescence-based detection of protein kinase A activity using a molecular beacon probe. Bioengineered 2017; 8:716-722. [PMID: 28594266 DOI: 10.1080/21655979.2017.1338219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Protein kinase A was detected by quantifying the amount of ATP used after a protein kinase reaction. The ATP assay was performed using the T4 DNA ligase and a molecular beacon (MB). In the presence of ATP, DNA ligase catalyzed the ligation of short DNA. The ligation product then hybridized to MB, resulting in a fluorescence enhancement of the MB. This assay was capable of determining protein kinase A in the range of 12.5∼150 nM, with a detection limit of 1.25 nM. Furthermore, this assay could also be used to investigate the effect of genistein on protein kinase A. It was a universal, non-radioisotopic, and homogeneous method for assaying protein kinase A.
Collapse
Affiliation(s)
- Changbei Ma
- a State Key Laboratory of Medical Genetics & School of Life Sciences , Central South University , Changsha , China.,b State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha , China
| | - Xiaoyuan Lv
- b State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha , China
| | - Kemin Wang
- b State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha , China
| | - Shunxin Jin
- a State Key Laboratory of Medical Genetics & School of Life Sciences , Central South University , Changsha , China
| | - Haisheng Liu
- a State Key Laboratory of Medical Genetics & School of Life Sciences , Central South University , Changsha , China
| | - Kefeng Wu
- a State Key Laboratory of Medical Genetics & School of Life Sciences , Central South University , Changsha , China
| | - Weimin Zeng
- a State Key Laboratory of Medical Genetics & School of Life Sciences , Central South University , Changsha , China
| |
Collapse
|
10
|
Amperometric determination of the activity of protein kinase a using a glassy carbon electrode modified with IgG functionalized gold nanoparticles conjugated to horseradish peroxidase. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2341-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Zhang GY, Cai C, Cosnier S, Zeng HB, Zhang XJ, Shan D. Zirconium-metalloporphyrin frameworks as a three-in-one platform possessing oxygen nanocage, electron media, and bonding site for electrochemiluminescence protein kinase activity assay. NANOSCALE 2016; 8:11649-11657. [PMID: 27218308 DOI: 10.1039/c6nr01206j] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A Zr-based metal-organic framework with zinc tetrakis(carboxyphenyl)-porphyrin (ZnTCPP) groups (MOF-525-Zn) was utilized to develop a novel electrochemiluminescence (ECL) biosensor for highly sensitive protein kinase activity assay. In this work, in terms of ECL measurements and cyclic voltammetry, the cathodic ECL behaviors of MOF-525-Zn in aqueous media were thoroughly investigated for the first time. The photoelectric active groups ZnTCPP on the MOF-525-Zn frameworks could promote the generation of singlet oxygen ((1)O2) via a series of electrochemical and chemical reactions, resulting in a strong and stable red irradiation at 634 nm. Additionally, the surfactant tetraoctylammonium bromide (TOAB) further facilitated dissolved oxygen to interact with the active sites ZnTCPP of MOF-525-Zn. Furthermore, the inorganic Zr-O clusters of MOF-525-Zn were simultaneously served as the recognition sites of phosphate groups. And then, an ultrasensitive ECL sensor was proposed for protein kinase A (PKA) activity detection with a linear range from 0.01 to 20 U mL(-1) and a sensitive detection limit of 0.005 U mL(-1). This biosensor can also be applied for quantitative kinase inhibitor screening. Finally, it exhibits good performance with high stability and acceptable fabrication reproducibility, which provide a valuable strategy for clinic diagnostics and therapeutics.
Collapse
Affiliation(s)
- Guang-Yao Zhang
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Chang Cai
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Serge Cosnier
- Univ. Grenoble Alpes, Département de Chimie Moléculaire, UMR CNRS 5250, 570 rue de la Chimie, CS 40700, 38058 Grenoble cedex 9, France
| | - Hai-Bo Zeng
- Institute of Optoelectronics & Nanomaterials, Jiangsu Key Laboratory of Advanced Micro & Nano Materials and Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xue-Ji Zhang
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Dan Shan
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
12
|
Haisch C. Raman-based microarray readout: a review. Anal Bioanal Chem 2016; 408:4535-45. [PMID: 26973235 DOI: 10.1007/s00216-016-9444-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/16/2016] [Accepted: 02/23/2016] [Indexed: 11/26/2022]
Abstract
For a quarter of a century, microarrays have been part of the routine analytical toolbox. Label-based fluorescence detection is still the commonest optical readout strategy. Since the 1990s, a continuously increasing number of label-based as well as label-free experiments on Raman-based microarray readout concepts have been reported. This review summarizes the possible concepts and methods and their advantages and challenges. A common label-based strategy is based on the binding of selective receptors as well as Raman reporter molecules to plasmonic nanoparticles in a sandwich immunoassay, which results in surface-enhanced Raman scattering signals of the reporter molecule. Alternatively, capture of the analytes can be performed by receptors on a microarray surface. Addition of plasmonic nanoparticles again leads to a surface-enhanced Raman scattering signal, not of a label but directly of the analyte. This approach is mostly proposed for bacteria and cell detection. However, although many promising readout strategies have been discussed in numerous publications, rarely have any of them made the step from proof of concept to a practical application, let alone routine use. Graphical Abstract Possible realization of a SERS (Surface-Enhanced Raman Scattering) system for microarray readout.
Collapse
Affiliation(s)
- Christoph Haisch
- Technische Universität München, Marchioninistrasse 17, 81377, Munich, Germany.
| |
Collapse
|
13
|
Ren W, Damayanti NP, Wang X, Irudayaraj JMK. Kinase phosphorylation monitoring with i-motif DNA cross-linked SERS probes. Chem Commun (Camb) 2015; 52:410-3. [PMID: 26525744 DOI: 10.1039/c5cc06566f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We propose an ultrasensitive SERS-based peptide biosensor platform to monitor phosphorylation catalyzed by kinase in a dynamic format. The developed SERS strategy has a short response time with potential to monitor phosphorylation in live cells.
Collapse
Affiliation(s)
- Wen Ren
- Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
14
|
Tisserant JN, Reissner PA, Beyer H, Fedoryshyn Y, Stemmer A. Water-Mediated Assembly of Gold Nanoparticles into Aligned One-Dimensional Superstructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7220-7. [PMID: 26072942 DOI: 10.1021/acs.langmuir.5b01135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This Article shows that water in ethanol colloids of gold nanoparticles enhances the formation of linear clusters and, more important for applications in electronics, determines their assembly on surfaces. We show by dynamic light scattering that ethanol colloids contain mainly monomers and dimers and that wormlike superstructures are mostly absent, despite UV-vis evidence of aggregation. Water added to the colloid as a cosolvent was found to enhance the number of clusters as well as their average size, confirming its role in linear self-assembly, on the scale of a few particles. Water adsorbed from the atmosphere during coating was also found to be a powerful lever to tune self-assembly on surfaces. By varying the relative humidity, a sharp transition from branched to linear superstructures was observed, showing the importance of water as a cosolvent in the formation of cluster superstructures. We show that one-dimensional superstructures may form due to long-range mobility of precursor clusters on wet surfaces, allowing their rearrangement. The understanding of the phenomenon allows us to statistically align both clusters and resulting superstructures on patterned substrates, opening the way to rapid screening in molecular electronics.
Collapse
Affiliation(s)
| | - Patrick A Reissner
- †Nanotechnology Group, ETH Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Hannes Beyer
- †Nanotechnology Group, ETH Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Yuriy Fedoryshyn
- ‡Institute of Electromagnetic Fields, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Andreas Stemmer
- †Nanotechnology Group, ETH Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| |
Collapse
|
15
|
Label and Label-Free Detection Techniques for Protein Microarrays. MICROARRAYS 2015; 4:228-44. [PMID: 27600222 PMCID: PMC4996399 DOI: 10.3390/microarrays4020228] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/10/2015] [Accepted: 04/17/2015] [Indexed: 02/02/2023]
Abstract
Protein microarray technology has gone through numerous innovative developments in recent decades. In this review, we focus on the development of protein detection methods embedded in the technology. Early microarrays utilized useful chromophores and versatile biochemical techniques dominated by high-throughput illumination. Recently, the realization of label-free techniques has been greatly advanced by the combination of knowledge in material sciences, computational design and nanofabrication. These rapidly advancing techniques aim to provide data without the intervention of label molecules. Here, we present a brief overview of this remarkable innovation from the perspectives of label and label-free techniques in transducing nano-biological events.
Collapse
|
16
|
Electrochemical detection of protein kinase activity based on carboxypeptidase Y digestion triggered signal amplification. Biosens Bioelectron 2015; 66:77-83. [DOI: 10.1016/j.bios.2014.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/09/2014] [Indexed: 02/06/2023]
|
17
|
Yin H, Wang M, Li B, Yang Z, Zhou Y, Ai S. A sensitive electrochemical biosensor for detection of protein kinase A activity and inhibitors based on Phos-tag and enzymatic signal amplification. Biosens Bioelectron 2015; 63:26-32. [DOI: 10.1016/j.bios.2014.07.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/26/2014] [Accepted: 07/08/2014] [Indexed: 12/30/2022]
|
18
|
Tang S, Hu Y, Shen Q, Fang H, Li W, Nie Z, Yao S. Cyclic-AMP-dependent protein kinase (PKA) activity assay based on FRET between cationic conjugated polymer and chromophore-labeled peptide. Analyst 2014; 139:4710-6. [DOI: 10.1039/c4an00814f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Liu X, Li Y, Xu X, Li P, Nie Z, Huang Y, Yao S. Nanomaterial-based tools for protein kinase bioanalysis. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Piergies N, Proniewicz E, Kudelski A, Rydzewska A, Kim Y, Andrzejak M, Proniewicz LM. Fourier Transform Infrared and Raman and Surface-Enhanced Raman Spectroscopy Studies of a Novel Group of Boron Analogues of Aminophosphonic Acids. J Phys Chem A 2012; 116:10004-14. [DOI: 10.1021/jp307064p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Natalia Piergies
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow,
Poland
| | - Edyta Proniewicz
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow,
Poland
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw,
Poland
| | - Agata Rydzewska
- Department of Bioorganic
Chemistry,
Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Younkyoo Kim
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin, Kyunggi-Do,
449-791, Korea
| | - Marcin Andrzejak
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow,
Poland
| | - Leonard M. Proniewicz
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow,
Poland
- The State Higher Vocational School, ul. Mickiewicza 8, 33-100 Tarnów,
Poland
| |
Collapse
|
21
|
Staining-free gel electrophoresis-based multiplex enzyme assay using DNA and peptide dual-functionalized gold nanoparticles. Electrophoresis 2012; 33:1288-91. [DOI: 10.1002/elps.201100591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012; 112:2739-79. [PMID: 22295941 PMCID: PMC4102386 DOI: 10.1021/cr2001178] [Citation(s) in RCA: 2841] [Impact Index Per Article: 218.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Krishnendu Saha
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sarit S. Agasti
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Chaekyu Kim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Xiaoning Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
23
|
Zheng X, Chen Y, Bi N, Qi H, Chen Y, Wang X, Zhang H, Tian Y. Determination of the sodium 2-mercaptoethanesulfonate based on surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 81:578-582. [PMID: 21782501 DOI: 10.1016/j.saa.2011.06.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 05/31/2023]
Abstract
Based on the surface-enhanced Raman scattering (SERS) sodium 2-mercaptoethanesulfonate (mesna) was determined using unmodified gold colloid as the probe. The Raman scattering intensity was obviously enhanced in the presence of sodium chloride. The influence of experimental parameters, such as incubation time, sodium chloride concentration and pH value on SERS performance was examined. Under the optimum conditions, the SERS intensity is proportional to the concentration of mesna in the range of 9.0×10(-8) to 9.0×10(-7) mol/L and detection limit (S/N=3) is 1.16×10(-8) mol/L. The corresponding correlation coefficient of the linear equation is 0.996, which indicates that there is a good linear relationship between SERS intensity and mesna concentration. The experimental results indicate that the proposed method is a viable method for determination of mesna. The real samples were analyzed and the results obtained were satisfactory.
Collapse
Affiliation(s)
- Xia Zheng
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang J, Cao Y, Li Y, Liang Z, Li G. Electrochemical strategy for detection of phosphorylation based on enzyme-linked electrocatalysis. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2010.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Han X, Goebl J, Lu Z, Yin Y. Role of salt in the spontaneous assembly of charged gold nanoparticles in ethanol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5282-5289. [PMID: 21466161 DOI: 10.1021/la200459t] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This paper investigates the role of salt in the spontaneous linear assembly of charged gold nanoparticles in ethanol and attempts to clear up a misunderstanding on the role of ethanol in this process. Many prior reports have noted that the addition of ethanol to an aqueous solution of gold nanoparticles causes their aggregation into linear assemblies. It was therefore believed that ethanol plays the determining role during the assembly process. In this work, we carried out systematic studies which indicate that residual salt in conjunction with ethanol, instead of ethanol itself, induces the assembly of gold nanoparticles in ethanol. In the absence of salt, gold nanoparticles can be well dispersed in an ethanol solution. Furthermore, we find that the chainlike assemblies can disassemble upon dilution of the salt or the evaporation of ethanol if the gold nanoparticles are protected with a sufficiently strong ligand.
Collapse
Affiliation(s)
- Xiaogang Han
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | | | | | | |
Collapse
|
26
|
|
27
|
Nguyen DT, Kim DJ, Kim KS. Controlled synthesis and biomolecular probe application of gold nanoparticles. Micron 2010; 42:207-27. [PMID: 20952201 DOI: 10.1016/j.micron.2010.09.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/21/2010] [Accepted: 09/21/2010] [Indexed: 02/08/2023]
Abstract
In addition to their optical properties, the ability of gold nanoparticles (Au NPs) to generate table immobilization of biomolecules, whilst retaining their bioactivities is a major advantage to apply them as biosensors. Optical biosensors using Au NPs are simple, fast and reliable and, recently, they have been moving from laboratory study to the point of practical use. The optical properties of Au NPs strongly depend on their size, shape, degree of aggregation and the functional groups on their surface. Rapid advances in the field of nanotechnology offer us a great opportunity to develop the controllable synthesis and modification of Au NPs as well as to study on their properties and applications. The size-controlled growth of Au NPs requires the isotropic growth on the surface of Au nuclei whereas anisotropic growth will induce the formation of Au NPs of varying shape. Functionalized Au NPs provide sensitive and selective biosensors for the detection of many targets, including metal ions, small organic compounds, protein, DNA, RNA and cell based on their optical, electrical or electrochemical signals. In this review, we will discuss the size- and shape-controlled growth and functionalization of Au NPs to obtain Au nanoprobes. The basis of the optical detection of Au nanoprobes and their applications in nucleic acid, protein detection and cell imaging are also introduced.
Collapse
Affiliation(s)
- Dung The Nguyen
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwon-Do 200-701, Republic of Korea
| | | | | |
Collapse
|
28
|
MA LN, LIU DJ, WANG ZX. Synthesis and Applications of Gold Nanoparticle Probes. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.3724/sp.j.1096.2010.00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Lee M, Lee S, Lee JH, Lim HW, Seong GH, Lee EK, Chang SI, Oh CH, Choo J. Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens Bioelectron 2010; 26:2135-41. [PMID: 20926277 DOI: 10.1016/j.bios.2010.09.021] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/06/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
Abstract
This paper reports a highly reproducible immunoassay of cancer markers using surface-enhanced Raman scattering (SERS) imaging. SERS is a highly sensitive detection method but it is limited in its ability to achieve reproducible signal enhancement because of the difficulty with precisely controlling the uniform distribution of hot junctions. Consequently, inconsistent enhancement prevents the wide exploitation of SERS detection as a bio-detection tool for quantitative analysis. To resolve this problem, we explored the use of a SERS imaging-based immunoassay. For this purpose, Raman reporter-labeled hollow gold nanospheres (HGNs), were manufactured and antibodies were immobilized onto their surfaces for targeting specific antigens. After the formation of sandwich immunocomplexes using these functional HGNs on the surfaces of gold patterned wells, the SERS mapping images were measured. For target protein markers, 12×9 pixels were imaged using a Raman mapping technique in the 0-10(-4) g/mL concentration range, and the SERS signals for 66 pixels were averaged. Here, the SERS imaging-based assay shows much better correlations between concentration and intensity than does the conventional point-based assay. The limits of detection were determined to be 0.1 pg/mL and 1.0 pg/mL for angiogenin (ANG) and alpha-fetoprotein (AFP), respectively. This detection sensitivity is increased by three or four orders of magnitude over that of conventional ELISA method. The detectable dynamic range for SERS imaging (10(-4)-10(-12) g/mL) is also much wider than that for ELISA (10(-6)-10(-9) g/mL).
Collapse
Affiliation(s)
- Moonkwon Lee
- Department of Bionano Engineering, Hanyang University, Ansan 426-791, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Synthesis and Applications of Gold Nanoparticle Probes. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1016/s1872-2040(09)60013-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Li X, Wang J, Sun L, Wang Z. Gold nanoparticle-based colorimetric assay for selective detection of aluminium cation on living cellular surfaces. Chem Commun (Camb) 2009; 46:988-90. [PMID: 20107673 DOI: 10.1039/b920135a] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colorimetric assay based on pentapeptide (CALNN) functionalized gold nanoparticles exhibits high sensitivity and selectivity for detection of aluminium cation (Al(3+)) both in aqueous solution and on living cellular surfaces under physiological condition.
Collapse
Affiliation(s)
- Xiaokun Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | | | | | | |
Collapse
|