1
|
Hui CY, Liu MQ, Guo Y. Synthetic bacteria designed using ars operons: a promising solution for arsenic biosensing and bioremediation. World J Microbiol Biotechnol 2024; 40:192. [PMID: 38709285 DOI: 10.1007/s11274-024-04001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
The global concern over arsenic contamination in water due to its natural occurrence and human activities has led to the development of innovative solutions for its detection and remediation. Microbial metabolism and mobilization play crucial roles in the global cycle of arsenic. Many microbial arsenic-resistance systems, especially the ars operons, prevalent in bacterial plasmids and genomes, play vital roles in arsenic resistance and are utilized as templates for designing synthetic bacteria. This review novelty focuses on the use of these tailored bacteria, engineered with ars operons, for arsenic biosensing and bioremediation. We discuss the advantages and disadvantages of using synthetic bacteria in arsenic pollution treatment. We highlight the importance of genetic circuit design, reporter development, and chassis cell optimization to improve biosensors' performance. Bacterial arsenic resistances involving several processes, such as uptake, transformation, and methylation, engineered in customized bacteria have been summarized for arsenic bioaccumulation, detoxification, and biosorption. In this review, we present recent insights on the use of synthetic bacteria designed with ars operons for developing tailored bacteria for controlling arsenic pollution, offering a promising avenue for future research and application in environmental protection.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Ming-Qi Liu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
2
|
Valenzuela-García LI, Alarcón-Herrera MT, Ayala-García VM, Barraza-Salas M, Salas-Pacheco JM, Díaz-Valles JF, Pedraza-Reyes M. Design of a Whole-Cell Biosensor Based on Bacillus subtilis Spores and the Green Fluorescent Protein To Monitor Arsenic. Microbiol Spectr 2023; 11:e0043223. [PMID: 37284752 PMCID: PMC10433799 DOI: 10.1128/spectrum.00432-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
A green fluorescent protein (GFP)-based whole-cell biosensor (WCB-GFP) for monitoring arsenic (As) was developed in Bacillus subtilis. To this end, we designed a reporter gene fusion carrying the gfpmut3a gene under the control of the promoter/operator region of the arsenic operon (Pars::gfpmut3a) in the extrachromosomal plasmid pAD123. This construct was transformed into B. subtilis 168, and the resultant strain was used as a whole-cell biosensor (BsWCB-GFP) for the detection of As. The BsWCB-GFP was specifically activated by inorganic As(III) and As(V), but not by dimethylarsinic acid [DMA(V)], and exhibited high tolerance to the noxious effects of arsenic. Accordingly, after 12 h exposure, B. subtilis cells carrying the Pars::gfpmut3a fusion exhibited 50 and 90% lethal doses (LD50 and LD90) to As(III) of 0.89 mM and As 1.71 mM, respectively. Notably, dormant spores from the BsWCB-GFP were able to report the presence of As(III) in a concentration range from 0.1 to 1,000 μM 4 h after the onset of germination. In summary, the specificity and high sensitivity for As, as well as its ability to proliferate under concentrations of the metal that are considered toxic in water and soil, makes the B. subtilis biosensor developed here a potentially important tool for monitoring environmental samples contaminated with this pollutant. IMPORTANCE Arsenic (As) contamination of groundwater is associated with serious worldwide health risks. Detection of this pollutant at concentrations that are established as permissible for water consumption by WHO is a matter of significant interest. Here, we report the generation of a whole-cell biosensor for As detection in the Gram-positive spore former B. subtilis. This biosensor reports the presence of inorganic As, activating the expression of the green fluorescent protein (GFP) under the control of the promoter/operator of the ars operon. The biosensor can proliferate under concentrations of As(III) that are considered toxic in water and soil and detect this ion at concentrations as low as 0.1 μM. Of note, spores of the Pars-GFP biosensor exhibited the ability to detect As(III) following germination and outgrowth. Therefore, this novel tool has the potential to be directly applied to monitor As contamination in environmental samples.
Collapse
Affiliation(s)
- Luz I. Valenzuela-García
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV), Arroyo Seco, Durango, Mexico
| | | | - Víctor M. Ayala-García
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico
| | - Marcelo Barraza-Salas
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico
| | - José Manuel Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico
| | | | | |
Collapse
|
3
|
Transcription Factor-Based Biosensors for Detecting Pathogens. BIOSENSORS 2022; 12:bios12070470. [PMID: 35884273 PMCID: PMC9312912 DOI: 10.3390/bios12070470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 12/23/2022]
Abstract
Microorganisms are omnipresent and inseparable from our life. Many of them are beneficial to humans, while some are not. Importantly, foods and beverages are susceptible to microbial contamination, with their toxins causing illnesses and even death in some cases. Therefore, monitoring and detecting harmful microorganisms are critical to ensuring human health and safety. For several decades, many methods have been developed to detect and monitor microorganisms and their toxicants. Conventionally, nucleic acid analysis and antibody-based analysis were used to detect pathogens. Additionally, diverse chromatographic methods were employed to detect toxins based on their chemical and structural properties. However, conventional techniques have several disadvantages concerning analysis time, sensitivity, and expense. With the advances in biotechnology, new approaches to detect pathogens and toxins have been reported to compensate for the disadvantages of conventional analysis from different research fields, including electrochemistry, nanotechnology, and molecular biology. Among them, we focused on the recent studies of transcription factor (TF)-based biosensors to detect microorganisms and discuss their perspectives and applications. Additionally, the other biosensors for detecting microorganisms reported in recent studies were also introduced in this review.
Collapse
|
4
|
Li P, Wang Y, Yuan X, Liu X, Liu C, Fu X, Sun D, Dang Y, Holmes DE. Development of a whole-cell biosensor based on an ArsR-P ars regulatory circuit from Geobacter sulfurreducens. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 6:100092. [PMID: 36159180 PMCID: PMC9488089 DOI: 10.1016/j.ese.2021.100092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 05/30/2023]
Abstract
In this study, an Escherichia coli (E. coli) whole-cell biosensor for the specific detection of bioavailable arsenic was developed by placing a green fluorescent protein (GFP) reporter gene under the control of the ArsR1 (GSU2952) regulatory circuit from Geobacter sulfurreducens. E. coli cells only emitted green fluorescence in the presence of arsenite and were more sensitive to arsenite when they were grown in M9 supplemented medium compared to LB medium. Under optimal test conditions, the Geobacter arsR1 promoter had a detection limit of 0.01 μM arsenite and the GFP expression was linear within a range of 0.03-0.1 μM (2.25-7.5 μg/l). These values were well below World Health Organization's drinking water quality standard, which is 10 μg/l. The feasibility of using this whole-cell biosensor to detect arsenic in water samples, such as arsenic polluted tap water and landfill leachate was verified. The biosensor was determined to be just as sensitive as atomic fluorescence spectrometry. This study examines the potential applications of biosensors constructed with Geobacter ArsR-P ars regulatory circuits and provides a rapid and cost-effective tool that can be used for arsenic detection in water samples.
Collapse
Affiliation(s)
- Pengsong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yumingzi Wang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xin Yuan
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chunmao Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaofen Fu
- Key Laboratory of Beijing Yanjing Beer Brewing Technology, Beijing Yan Jing Brewery Company Ltd., Beijing 101300, China
- MOST-USDA Joint Research Center for Biofuels, Beijing Engineering Research Center for Biofuels, Institute of New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dawn E. Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Rd, Springfield, MA 01119, USA
| |
Collapse
|
5
|
García-García JD, Sánchez-Thomas R, Moreno-Sánchez R. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnol Adv 2016; 34:859-873. [PMID: 27184302 DOI: 10.1016/j.biotechadv.2016.05.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/29/2023]
Abstract
Free-living microorganisms may become suitable models for recovery of non-essential and essential heavy metals from wastewater bodies and soils by using and enhancing their accumulating and/or leaching abilities. This review analyzes the variety of different mechanisms developed mainly in bacteria, protists and microalgae to accumulate heavy metals, being the most relevant those involving phytochelatin and metallothionein biosyntheses; phosphate/polyphosphate metabolism; compartmentalization of heavy metal-complexes into vacuoles, chloroplasts and mitochondria; and secretion of malate and other organic acids. Cyanide biosynthesis for extra-cellular heavy metal bioleaching is also examined. These metabolic/cellular processes are herein analyzed at the transcriptional, kinetic and metabolic levels to provide mechanistic basis for developing genetically engineered microorganisms with greater capacities and efficiencies for heavy metal recovery, recycling of heavy metals, biosensing of metal ions, and engineering of metalloenzymes.
Collapse
Affiliation(s)
- Jorge D García-García
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México.
| | - Rosina Sánchez-Thomas
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México
| | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México
| |
Collapse
|
6
|
Mercury (II) sensor based on monitoring dissociation rate of the trans-acting factor MerR from cis-element by surface plasmon resonance. Biosens Bioelectron 2014; 67:309-14. [PMID: 25190091 DOI: 10.1016/j.bios.2014.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/14/2014] [Accepted: 08/20/2014] [Indexed: 11/23/2022]
Abstract
Transcriptional switches regulate gene expression in response to environmental changes surrounding cell. Many studies have focused on two fundamentally different models of transcriptional control by bacterial metalloregulatory protein. Distortion of the DNA fragment including cis-element, to which the trans-acting factor MerR binds, is accepted as the mechanism of gene expression regulation by Hg (II) while, in cases of the other trans-acting factors ArsR and CadC, events of association to and dissociation from cis-element are known to control transcription in response to As (III) and Cd (II), respectively. In this study, interactions between green-fluorescent-protein-tagged trans-acting factor and immobilized cis-element were analyzed on solid surface. Fluorescent measurements and surface plasmon resonance (SPR) responses revealed that although the equilibrium dissociation constant (KD) was much lower in MerR than in ArsR and CadC, the dissociation rate of MerR from DNA increased in response to Hg (II) at concentrations of 5-10(4) µg l(-1). These results firstly demonstrate an increase of KD between MerR and its recognition site in DNA by Hg (II), and possibility of rapid Hg (II) quantification with the low detection limit (5 µg l(-1)) and the high dynamic range (10(1)-10(4) µg l(-1)).
Collapse
|
7
|
Kaur H, Kumar R, Babu JN, Mittal S. Advances in arsenic biosensor development--a comprehensive review. Biosens Bioelectron 2014; 63:533-545. [PMID: 25150780 DOI: 10.1016/j.bios.2014.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/21/2014] [Accepted: 08/04/2014] [Indexed: 01/23/2023]
Abstract
Biosensors are analytical devices having high sensitivity, portability, small sample requirement and ease of use for qualitative and quantitative monitoring of various analytes of human importance. Arsenic (As), owing to its widespread presence in nature and high toxicity to living creatures, requires frequent determination in water, soil, agricultural and food samples. The present review is an effort to highlight the various advancements made so far in the development of arsenic biosensors based either on recombinant whole cells or on certain arsenic-binding oligonucleotides or proteins. The role of futuristic approaches like surface plasmon resonance (SPR) and aptamer technology has also been discussed. The biomethods employed and their general mechanisms, advantages and limitations in relevance to arsenic biosensors developed so far are intended to be discussed in this review.
Collapse
Affiliation(s)
- Hardeep Kaur
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India.
| | - Rabindra Kumar
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India.
| | - J Nagendra Babu
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India.
| | - Sunil Mittal
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India.
| |
Collapse
|
8
|
Merulla D, Buffi N, Beggah S, Truffer F, Geiser M, Renaud P, van der Meer JR. Bioreporters and biosensors for arsenic detection. Biotechnological solutions for a world-wide pollution problem. Curr Opin Biotechnol 2013; 24:534-41. [DOI: 10.1016/j.copbio.2012.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 08/17/2012] [Accepted: 09/02/2012] [Indexed: 11/28/2022]
|
9
|
Siddiki MSR, Ueda S, Maeda I. Fluorescent bioassays for toxic metals in milk and yoghurt. BMC Biotechnol 2012; 12:76. [PMID: 23098077 PMCID: PMC3505735 DOI: 10.1186/1472-6750-12-76] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 10/16/2012] [Indexed: 11/29/2022] Open
Abstract
Background From a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals. Simple, inexpensive, and on-site assays would enable constant monitoring of their contents. Bioassays that can measure toxic metals in milk or yoghurt might reduce the risk. For this purpose, the green fluorescent protein (GFP)-tagged trans factors, ArsR-GFP and CadC-GFP, together with their cis elements were used to develop such bioassays. Results ArsR-GFP or CadC-GFP, which binds either toxic metal or DNA fragment including cis element, was directly mixed with cow’s milk or yoghurt within a neutral pH range. The fluorescence of GFP, which is reflected by the association/dissociation ratio between cis element and trans factor, significantly changed with increasing externally added As (III) or Cd (II) whereas smaller responses to externally added Pb (II) and Zn (II) were found. Preparation and dilution of whey fraction at low pH were essential to intrinsic zinc quantification using CadC-GFP. Using the extraction procedure and bioassay, intrinsic Zn (II) concentrations ranging from 1.4 to 4.8 mg/l for milk brands and from 1.2 to 2.9 mg/kg for yoghurt brands were determined, which correlated to those determined using inductively coupled plasma atomic emission spectroscopy. Conclusions GFP-tagged bacterial trans factors and cis elements can work in the neutralized whole composition and diluted whey fraction of milk and yoghurt. The feature of regulatory elements is advantageous for establishment of simple and rapid assays of toxic metals in dairy products.
Collapse
Affiliation(s)
- Mohammad Shohel Rana Siddiki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Japan
| | | | | |
Collapse
|
10
|
Thermoresponsive magnetic nano-biosensors for rapid measurements of inorganic arsenic and cadmium. SENSORS 2012. [PMID: 23202034 PMCID: PMC3545605 DOI: 10.3390/s121014041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III) or Cd(II). In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 μg/L for As(III) and Cd(II) in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water.
Collapse
|
11
|
Siddiki MSR, Kawakami Y, Ueda S, Maeda I. Solid phase biosensors for arsenic or cadmium composed of A trans factor and cis element complex. SENSORS 2011; 11:10063-73. [PMID: 22346629 PMCID: PMC3274271 DOI: 10.3390/s111110063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/18/2011] [Accepted: 10/24/2011] [Indexed: 11/16/2022]
Abstract
The presence of toxic metals in drinking water has hazardous effects on human health. This study was conducted to develop GFP-based-metal-binding biosensors for on-site assay of toxic metal ions. GFP-tagged ArsR and CadC proteins bound to a cis element, and lost the capability of binding to it in their As- and Cd-binding conformational states, respectively. Water samples containing toxic metals were incubated on a complex of GFP-tagged ArsR or CadC and cis element which was immobilized on a solid surface. Metal concentrations were quantified with fluorescence intensity of the metal-binding states released from the cis element. Fluorescence intensity obtained with the assay significantly increased with increasing concentrations of toxic metals. Detection limits of 1 μg/L for Cd(II) and 5 μg/L for As(III) in purified water and 10 µg/L for Cd(II) and As(III) in tap water and bottled mineral water were achieved by measurement with a battery-powered portable fluorometer after 15-min and 30-min incubation, respectively. A complex of freeze dried GFP-tagged ArsR or CadC binding to cis element was stable at 4 °C and responded to 5 μg/L As(III) or Cd(II). The solid phase biosensors are sensitive, less time-consuming, portable, and could offer a protocol for on-site evaluation of the toxic metals in drinking water.
Collapse
Affiliation(s)
- Mohammad Shohel Rana Siddiki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Japan; E-Mails: (M.S.R.S.); (S.U.)
| | - Yasunari Kawakami
- Faculty of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya 321-8505, Japan; E-Mail: (Y.K.)
| | - Shunsaku Ueda
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Japan; E-Mails: (M.S.R.S.); (S.U.)
- Faculty of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya 321-8505, Japan; E-Mail: (Y.K.)
| | - Isamu Maeda
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Japan; E-Mails: (M.S.R.S.); (S.U.)
- Faculty of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya 321-8505, Japan; E-Mail: (Y.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-28-649-5477; Fax: +81-28-649-5477
| |
Collapse
|
12
|
Affiliation(s)
- Ana Ballesteros-Gómez
- Department of Analytical Chemistry, Edificio Anexo Marie Curie, Campus de Rabanales, 14071 Córdoba, Spain
| | - Soledad Rubio
- Department of Analytical Chemistry, Edificio Anexo Marie Curie, Campus de Rabanales, 14071 Córdoba, Spain
| |
Collapse
|