1
|
Jiao Y, Li L, Ge J, Tai Y, Han H. A Polymethionine Nanoparticle Fluorescent Probe for Sensitive Detection of Naringin and Naringenin. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3919. [PMID: 39203099 PMCID: PMC11355485 DOI: 10.3390/ma17163919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024]
Abstract
In this work, we demonstrated a novel, sensitive and effective fluorescent naringin (NRG) and naringenin (NRGe) detection method using polymethionine nanoparticles (PMNPs) as a fluorescent nanoprobe. The PMNPs were first synthesized by autopolymerization of methionine at 90 °C when trace copper ions existed. The as-prepared PMNPs were thoroughly characterized by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), gel permeation chromatograph (GPC), nuclear magnetic resonance spectroscopy (NMR), transient and steady-state fluorescence and UV-Vis absorption spectroscopy. The quenching mechanism was attributed to the inner filter effect (IFE). Moreover, the developed assay was used successfully to detect NRG and NRGe in real samples of citrus fruits, illustrating that this detection method has great potential application in the field of citrus fruits analysis.
Collapse
Affiliation(s)
- Yuhong Jiao
- School of Materials and Chemical Engineering, Bengbu University, Bengbu 233000, China; (Y.J.); (J.G.); (Y.T.)
| | - Lu Li
- School of Materials and Chemical Engineering, Bengbu University, Bengbu 233000, China; (Y.J.); (J.G.); (Y.T.)
| | - Jinlong Ge
- School of Materials and Chemical Engineering, Bengbu University, Bengbu 233000, China; (Y.J.); (J.G.); (Y.T.)
| | - Yanfang Tai
- School of Materials and Chemical Engineering, Bengbu University, Bengbu 233000, China; (Y.J.); (J.G.); (Y.T.)
| | - Hui Han
- Anhui Triumph Applied Materials Co., Ltd., Bengbu 233000, China;
| |
Collapse
|
2
|
Dual-output toehold-mediated strand displacement amplification for sensitive homogeneous electrochemical detection of specie-specific DNA sequences for species identification. Biosens Bioelectron 2020; 161:112256. [PMID: 32365011 DOI: 10.1016/j.bios.2020.112256] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
The determination of specie-specific DNA sequences is a key factor for identification of animal species and detection of meat adulteration. Herein, a simple homogeneous electrochemical biosensor was developed for sensitive detection of specie-specific DNA sequences from meat products based on high efficient and specific dual-output toehold-mediated strand displacement (TMSD). After incubation with target DNA, large amount of methylene blue (electrochemical signal molecule) labeled probes (MB-P) were released from preformed DNA duplex structures by the process of dual-output TMSD amplification. The free MB-P could be further digested by Exonuclease I, and the enzymatic products contain little negative charge could diffuse to the surface of indium tin oxide electrode, generating significantly electrochemical signal. As a result, the designed biosensor showed a broad dynamic range from 0.01 pM to 100 pM, with a low detection limit of 8.2 fM, and ideal selectivity and reproducibility. Meanwhile, the approach exhibited acceptable accuracy for the detection of specie-specific DNA sequences, and possessed the potential application for the identification of animal species from meat products.
Collapse
|
3
|
Integration of Nanomaterials and Bioluminescence Resonance Energy Transfer Techniques for Sensing Biomolecules. BIOSENSORS-BASEL 2019; 9:bios9010042. [PMID: 30884844 PMCID: PMC6468577 DOI: 10.3390/bios9010042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 01/11/2023]
Abstract
Bioluminescence resonance energy transfer (BRET) techniques offer a high degree of sensitivity, reliability and ease of use for their application to sensing biomolecules. BRET is a distance dependent, non-radiative energy transfer, which uses a bioluminescent protein to excite an acceptor through the resonance energy transfer. A BRET sensor can quickly detect the change of a target biomolecule quantitatively without an external electromagnetic field, e.g., UV light, which normally can damage tissue. Having been developed quite recently, this technique has evolved rapidly. Here, different bioluminescent proteins have been reviewed. In addition to a multitude of bioluminescent proteins, this manuscript focuses on the recent development of BRET sensors by utilizing quantum dots. The special size-dependent properties of quantum dots have made the BRET sensing technique attractive for the real-time monitoring of the changes of target molecules and bioimaging in vivo. This review offers a look into the basis of the technique, donor/acceptor pairs, experimental applications and prospects.
Collapse
|
4
|
Li D, Zhuang J, Yang Y, Wang D, Yang J, He H, Fan W, Banerjee A, Lu Y, Wu W, Gan L, Qi J. Loss of integrity of doxorubicin liposomes during transcellular transportation evidenced by fluorescence resonance energy transfer effect. Colloids Surf B Biointerfaces 2018; 171:224-232. [PMID: 30036789 DOI: 10.1016/j.colsurfb.2018.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
The aim of this work was to elucidate the influence of liposome characteristics on the transcellular process by in vitro studies that would enable designing more efficient oral formulations. Various liposomes with different properties were prepared, including 100-500 nm, anionic, cationic and PEGylated liposomes. All liposomes were labeled by fluorescence resonance energy transfer (FRET) probes to evaluate their integrity in cellular uptake and transport. The FRET fluorescent intensity is proportional to the amount of intact liposomes, which was used to calculate the amount of intact liposomes in cellular uptake and transport. The liposomal structures were found to lose their integrity during or after uptake and only about 20% intact liposomes were detected in cells. However, more cationic liposomes were transported integrally across cell monolayer and accounted for 40.49% of total transport by triple culture models of Caco-2/HT29-MTX/Raji B. These results suggest that liposomes could improve cellular uptake and transport of the payloads significantly, but only a small fraction of liposomes are transported integrally across epithelial monolayer. The study is therefore helpful to rationally fabricate more efficient oral liposomes for poorly water-soluble drugs or biomacromolecules.
Collapse
Affiliation(s)
- Dong Li
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Jie Zhuang
- School of Pharmacy, Institute of Nanotechnology and Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yinqian Yang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Dandan Wang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Jinlong Yang
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Haisheng He
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Wufa Fan
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Amrita Banerjee
- School of Pharmacy, Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58103, USA
| | - Yi Lu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Wei Wu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Li Gan
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Jianping Qi
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China.
| |
Collapse
|
5
|
Li D, Zhuang J, He H, Jiang S, Banerjee A, Lu Y, Wu W, Mitragotri S, Gan L, Qi J. Influence of Particle Geometry on Gastrointestinal Transit and Absorption following Oral Administration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42492-42502. [PMID: 29148702 DOI: 10.1021/acsami.7b11821] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Geometry has been considered as one of the important parameters in nanoparticle design because it affects cellular uptake, transport across the physiological barriers, and in vivo distribution. However, only a few studies have been conducted to elucidate the influence of nanoparticle geometry in their in vivo fate after oral administration. This article discloses the effect of nanoparticle shape on transport and absorption in gastrointestinal (GI) tract. Nanorods and nanospheres were prepared and labeled using fluorescence resonance energy transfer molecules to track the in vivo fate of intact nanoparticles accurately. Results demonstrated that nanorods had significantly longer retention time in GI tract compared with nanospheres. Furthermore, nanorods exhibited stronger ability of penetration into space of villi than nanospheres, which is the main reason of longer retention time. In addition, mesenteric lymph transported 1.75% nanorods within 10 h, which was more than that with nanospheres (0.98%). Fluorescent signals arising from nanoparticles were found in the kidney but not in the liver, lung, spleen, or blood, which could be ascribed to low absorption of intact nanoparticles. In conclusion, nanoparticle geometry influences in vivo fate after oral delivery and nanorods should be further investigated for designing oral delivery systems for therapeutic drugs, vaccines, or diagnostic materials.
Collapse
Affiliation(s)
- Dong Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University , Shanghai 201203, China
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology , Shanghai 201418, China
| | - Jie Zhuang
- School of Pharmacy, Institute of Nanotechnology and Health, Shanghai University of Medicine & Health Sciences , Shanghai 201318, China
| | - Haisheng He
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University , Shanghai 201203, China
| | - Sifan Jiang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University , Shanghai 201203, China
| | - Amrita Banerjee
- Department of Chemical Engineering, University of California at Santa Barbara , Santa Barbara, California 93106, United States
| | - Yi Lu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University , Shanghai 201203, China
| | - Wei Wu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University , Shanghai 201203, China
| | - Samir Mitragotri
- Department of Chemical Engineering, University of California at Santa Barbara , Santa Barbara, California 93106, United States
| | - Li Gan
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology , Shanghai 201418, China
| | - Jianping Qi
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University , Shanghai 201203, China
| |
Collapse
|
6
|
Zhao HQ, Qiu GH, Liang Z, Li MM, Sun B, Qin L, Yang SP, Chen WH, Chen JX. A zinc(II)-based two-dimensional MOF for sensitive and selective sensing of HIV-1 ds-DNA sequences. Anal Chim Acta 2016; 922:55-63. [DOI: 10.1016/j.aca.2016.03.054] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/21/2016] [Accepted: 03/26/2016] [Indexed: 12/16/2022]
|
7
|
Pihlasalo S, Mariani L, Härmä H. Quantitative and discriminative analysis of nucleic acid samples using luminometric nonspecific nanoparticle methods. NANOSCALE 2016; 8:5902-5911. [PMID: 26912463 DOI: 10.1039/c5nr09252c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Homogeneous simple assays utilizing luminescence quenching and time-resolved luminescence resonance energy transfer (TR-LRET) were developed for the quantification of nucleic acids without sequence information. Nucleic acids prevent the adsorption of a protein to europium nanoparticles which is detected as a luminescence quenching of europium nanoparticles with a soluble quencher or as a decrease of TR-LRET from europium nanoparticles to the acceptor dye. Contrary to the existing methods based on fluorescent dye binding to nucleic acids, equal sensitivities for both single- (ssDNA) and double-stranded DNA (dsDNA) were measured and a detection limit of 60 pg was calculated for the quenching assay. The average coefficient of variation was 5% for the quenching assay and 8% for the TR-LRET assay. The TR-LRET assay was also combined with a nucleic acid dye selective to dsDNA in a single tube assay to measure the total concentration of DNA and the ratio of ssDNA and dsDNA in the mixture. To our knowledge, such a multiplexed assay is not accomplished with commercially available assays.
Collapse
Affiliation(s)
- S Pihlasalo
- Laboratory of Materials Chemistry and Chemical Analysis, Department of Chemistry, University of Turku, Vatselankatu 2, 20500 Turku, Finland.
| | | | | |
Collapse
|
8
|
Wang S, Zhang Y, Ning Y, Zhang GJ. A WS2 nanosheet-based platform for fluorescent DNA detection via PNA-DNA hybridization. Analyst 2015; 140:434-9. [PMID: 25426801 DOI: 10.1039/c4an01738b] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The WS2 nanosheet, a two-dimensional layered nanomaterial, shows high fluorescence quenching ability for the dye-labeled ssDNA. Currently, most of the fluorescent DNA detection methods employ DNA as a probe for recognition of target DNA. Peptide nucleic acid (PNA) is a DNA mimic but a neutral molecule, showing superior hybridization properties to target DNA. Based on the unique properties of WS2 nanosheet and PNA-DNA hybridization, we have developed a rapid, simple, stable and sensitive approach for DNA detection based on good fluorescence quenching ability of the WS2 nanosheet as well as high binding affinity and specificity of PNA to DNA. This novel assay is capable of exhibiting high sensitivity and specificity with a detection limit of 500 pM, and discriminating between single bases.
Collapse
Affiliation(s)
- Shuting Wang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China.
| | | | | | | |
Collapse
|
9
|
A high-throughput homogeneous immunoassay based on Förster resonance energy transfer between quantum dots and gold nanoparticles. Anal Chim Acta 2013; 763:43-9. [DOI: 10.1016/j.aca.2012.12.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/19/2012] [Accepted: 12/04/2012] [Indexed: 11/21/2022]
|
10
|
Zadran S, Standley S, Wong K, Otiniano E, Amighi A, Baudry M. Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics. Appl Microbiol Biotechnol 2012; 96:895-902. [PMID: 23053099 DOI: 10.1007/s00253-012-4449-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/17/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
Abstract
Förster (or fluorescence) resonance energy transfer (FRET) is a process involving the radiation-less transfer of energy from a "donor" fluorophore to an "acceptor" fluorophore. FRET technology enables the quantitative analysis of molecular dynamics in biophysics and in molecular biology, such as the monitoring of protein-protein interactions, protein-DNA interactions, and protein conformational changes. FRET-based biosensors have been utilized to monitor cellular dynamics not only in heterogeneous cellular populations, but also at the single-cell level in real time. Lately, applications of FRET-based biosensors range from basic biological to biomedical disciplines. Despite the diverse applications of FRET, FRET-based sensors still face many challenges. There is an increasing need for higher fluorescence resolution and improved specificity of FRET biosensors. Additionally, as more FRET-based technologies extend to medical diagnostics, the affordability of FRET reagents becomes a significant concern. Here, we will review current advances and limitations of FRET-based biosensor technology and discuss future FRET applications.
Collapse
Affiliation(s)
- Sohila Zadran
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Hao C, Xua L, Xing C, Kuang H, Wang L, Xu C. Oligonucleotide-based fluorogenic sensor for simultaneous detection of heavy metal ions. Biosens Bioelectron 2012; 36:174-8. [DOI: 10.1016/j.bios.2012.04.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/26/2012] [Accepted: 04/09/2012] [Indexed: 11/28/2022]
|
12
|
Zhang L, Wang H, Yu W, Su Z, Chai L, Li J, Shi Y. Facile and large-scale synthesis of functional poly(m-phenylenediamine) nanoparticles by Cu2+-assisted method with superior ability for dye adsorption. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm32859c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|