1
|
Rezaie M, Jalalvand AR. Ultrasensitive biosensing of thiram based on detection of the DNA damage induced by thiram: Application to investigation of protective effects of extra virgin olive oil against DNA damage. Toxicon 2023; 225:107066. [PMID: 36841361 DOI: 10.1016/j.toxicon.2023.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
In this work, a novel electrochemical biosensor was fabricated based on modification of a glassy carbon electrode (GCE) with nafion-DNA/gold nanoparticles/poly-ethylenedioxy pyrrole/multi-walled carbon nanotubes-ionic liquid (NF-DNA/Au NPs/PEDOP/MWCNTs-IL/GCE) with the aim of amperometric detection of the DNA damage induced by thiram (TH). By incubation of the biosensor with the TH, the TH was intercalated within DNA, and the exposed DNA released negative charges at the surface of the biosensor which repelled the probe molecules and caused the amperometric response of the biosensor to be decreased. Protective effects of extra virgin olive oil (EVOO) on the DNA damage induced by the TH were investigated by recording amperometric responses of the biosensor in the presence of EVOO, and the results confirmed that the response of the biosensor didn't change to confirm the protective effects of the EVOO on preventing the DNA damage induced by the TH. A novel and sensitive electroanalytical method was developed for determination of the TH in two linear ranges including 1-6 pM and 7-10 pM based on amperometric detection of the DNA damage induced by the TH which gave a LOD of 0.31 pM. The developed methodology in this work was successful in detection of the DNA damage induced by TH, detection of protective effects of EVOO on preventing DNA damage and determination of the TH in real matrices.
Collapse
Affiliation(s)
- Mehdi Rezaie
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Bipedal DNAzyme walker triggered dual-amplification electrochemical platform for ultrasensitive ratiometric biosensing of microRNA-21. Biosens Bioelectron 2022; 220:114879. [DOI: 10.1016/j.bios.2022.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
3
|
Shokri F, Yari A, Jalalvand AR. Simultaneous estimation of rates of DNA damage induced by three important chemotherapy drugs by a novel electrochemical biosensor assisted by chemometric multivariate calibration methods. Int J Biol Macromol 2022; 219:650-662. [PMID: 35952814 DOI: 10.1016/j.ijbiomac.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
In this work, a novel electrochemical biosensor assisted by multivariate calibration methods was developed for simultaneous estimation of rates of DNA damage induced by doxorubicin (DX), daunorubicin (DR) and idarubicin (ID), and also to simultaneous determination of the drugs. A glassy carbon electrode was efficiently modified and used as the biosensing platform. Binding and interactions of DX, DR and ID with DNA were modeled by molecular docking methods, and theoretical information was completed by experimental results. The methylene blue was able to intercalate within the DNA structure and by incubation of the biosensor with DX or DR or ID, the methylene blue was replaced by drug and therefore, the voltammetric signal of the biosensor was changed due to the exposed DNA and repelling the electrochemical probe molecules carrying negative charge. The DNA damage induced by each drug was individually monitored by differential pulse voltammetry and then, rates of DNA damage were calibrated and validated by mixture design and multivariate calibration methods. The developed multivariate calibration model constructed based on vectorization of the data was able to simultaneous detection of the rates of DNA damage induced by all the three drugs. The change in the biosensor response in the presence of the drugs was also modeled by multivariate calibration methods to simultaneous determination of the drugs.
Collapse
Affiliation(s)
- Foroozan Shokri
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran
| | - Abdollah Yari
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran
| | - Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Jalalvand AR. Electrochemistry in combination with hard- and soft-modeling chemometric methods for investigation of the inhibitory effects of naringenine on cytochrome P450. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
5
|
Khodarahmi R, Khateri S, Adibi H, Nasirian V, Hedayati M, Faramarzi E, Soleimani S, Goicoechea HC, Jalalvand AR. Chemometrical-electrochemical investigation for comparing inhibitory effects of quercetin and its sulfonamide derivative on human carbonic anhydrase II: Theoretical and experimental evidence. Int J Biol Macromol 2019; 136:377-385. [PMID: 31207328 DOI: 10.1016/j.ijbiomac.2019.06.093] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/12/2023]
Abstract
This paper reports results of a valuable study on investigation of inhibitory effects of the sulfonamide derivative of quercetin (QD) on human carbonic anhydrase II (CA-II) by electrochemical and chemometrical approaches. To achieve this goal, a glassy carbon electrode (GCE) was chosen as the sensing platform and different electrochemical techniques such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) were used to investigate and comparing inhibitory effects of quercetin (Q) and QD on CA-II. By the use of EQUISPEC, SPECFIT, SQUAD and REACTLAB as efficient hard-modeling algorithms, bindings of Q and QD with CA-II were investigated and the results confirmed that the QD inhibited the CA-II stronger than Q suggesting a highly relevant role of QD's-SO2NH2 group in inhibiting activity and also was confirmed by docking studies. Finally, a novel EIS technique based on interaction of Q and CA-II was developed for sensitive electroanalytical determination of CA-II and in this section of our study, the sensitivity of the developed electroanalytical methodology was improved by the modification of the GCE was with multi-walled carbon nanotubes-ionic liquid.
Collapse
Affiliation(s)
- Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shaya Khateri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Nasirian
- Department of Chemistry and Physics, Louisiana State University in Shreveport, Shreveport, LA, USA
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Faramarzi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shokoufeh Soleimani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hector C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Catedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC242 (S3000ZAA), Santa Fe, Argentina
| | - Ali R Jalalvand
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Jalalvand AR, Haseli A, Farzadfar F, Goicoechea HC. Fabrication of a novel biosensor for biosensing of bisphenol A and detection of its damage to DNA. Talanta 2019; 201:350-357. [PMID: 31122434 DOI: 10.1016/j.talanta.2019.04.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 01/18/2023]
Abstract
In this work, a novel electrochemical biosensor has been fabricated based on step-by-step modification of a glassy carbon electrode (GCE) with methylene blue (MB)-DNA/multiwalled carbon nanotubes (MWCNTs)-chitosan (CS)/palladium nanoparticles (Pd NPs)/fullerene C60 (C60) for voltammetric and impedimetric detection of DNA damage induced by bisphenol A (BPA). Modifications applied to the GCE were characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy. The EIS and DPV responses of the biosensor were increased and decreased, respectively, by the DNA damage induced by BPA which led us to develop novel systems for detection of DNA damage. Our records confirmed that the biosensor was able to rapid and sensitive detection of DNA damage induced by BPA. Finally, according to the developed systems for detection of DNA damage, we have developed voltammetric and impedimetric methods for determination of BPA.
Collapse
Affiliation(s)
- Ali R Jalalvand
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Haseli
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hector C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242, S3000ZAA, Santa Fe, Argentina
| |
Collapse
|
7
|
Varmira K, Saed-Mocheshi M, Jalalvand AR. Electrochemical sensing and bio-sensing of bisphenol A and detection of its damage to DNA: A comprehensive review. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Lu L, Guo L, Kang T, Cheng S. A gold electrode modified with a three-dimensional graphene-DNA composite for sensitive voltammetric determination of dopamine. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2267-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Lu L, Guo L, Li M, Kang T, Cheng S, Miao W. Investigation of perfluorooctanoic acid induced DNA damage using electrogenerated chemiluminescence associated with charge transfer in DNA. Anal Bioanal Chem 2016; 408:7137-45. [PMID: 27108285 DOI: 10.1007/s00216-016-9559-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/30/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
An electrogenerated chemiluminescence (ECL)-DNA sensor was designed and fabricated for the investigation of DNA damage by a potential environmental pollutant, perfluorooctanoic acid (PFOA). The ECL-DNA sensor consisted of a Au electrode that had a self-assembled monolayer of 15 base-pair double-stranded (ds) DNA oligonucleotides with covalently attached semiconductor CdSe quantum dots (QDs) at the distal end of the DNA. Characterization of the ECL-DNA sensor was conducted with X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), ECL, and cyclic voltammetry before and after the exposure of the sensor to PFOA. Consistent data revealed that the dsDNA on Au was severely damaged upon the incubation of the electrode in PFOA, causing significant increase in charge (or electron) transfer (CT) resistance within DNA strands. Consequently, the cathodic coreactant ECL responses of the Au/dsDNA-QDs electrode in the presence of K2S2O8 were markedly decreased. The strong interaction between DNA and PFOA via the hydrophobic interaction, especially the formation of F···H hydrogen bonds by insertion of the difluoro-methylene group of PFOA into the DNA base pairs, was believed to be responsible for the dissociation or loosening of dsDNA structure, which inhibited the CT through DNA. A linear relationship between the ECL signal of the sensor and the logarithmical concentration of PFOA displayed a dynamic range of 1.00 × 10(-14)-1.00 × 10(-4) M, with a limit of detection of 1.00 × 10(-15) M at a signal-to-noise ratio of 3. Graphical Abstract Illustration of ECL detection of PFOA on a Au/dsDNA-QDs ECL-DNA sensor.
Collapse
Affiliation(s)
- Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Linqing Guo
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Meng Li
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Tianfang Kang
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Shuiyuan Cheng
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wujian Miao
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China. .,Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
10
|
Zhang F, Zheng Y, Liang J, Long S, Chen X, Tan K. A simple and highly sensitive assay of perfluorooctanoic acid based on resonance light scattering technique. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 159:7-12. [PMID: 26824483 DOI: 10.1016/j.saa.2016.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/20/2015] [Accepted: 01/07/2016] [Indexed: 05/24/2023]
Abstract
A simple, highly sensitive resonance light scattering (RLS) method for the detection of perfluorooctanoic acid (PFOA) has been developed based on the interaction with crystal violet (CV). It was found that PFOA can form complexes with CV in acid medium resulting in remarkable enhancement of the RLS intensity of the system. And the enhanced RLS intensities are in proportion to the concentration of PFOA in the range of 0.1-25.0 μmol/L (R(2)=0.9998), with a detection limit of 11.0 nmol/L (S/N=3). In this work, the optimum reaction conditions and the interferences of foreign substances were investigated. The reaction mechanism between CV and PFOA was also studied by the absorption spectrum and scanning electron microscope (SEM). This method is successfully applied to the determination of PFOA in tap water and Jialing river water samples with RSD≤4.04%.
Collapse
Affiliation(s)
- Fang Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yonghong Zheng
- Chongqing Fiber Inspection Bureau, Chongqing 401121, PR China
| | - Jiaman Liang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Sha Long
- Chongqing Fiber Inspection Bureau, Chongqing 401121, PR China
| | - Xianping Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Kejun Tan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
11
|
Du J, Wang S, You H, Jiang R, Zhuang C, Zhang X. Developmental toxicity and DNA damage to zebrafish induced by perfluorooctane sulfonate in the presence of ZnO nanoparticles. ENVIRONMENTAL TOXICOLOGY 2016; 31:360-371. [PMID: 25258305 DOI: 10.1002/tox.22050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 06/03/2023]
Abstract
Perfluorooctane sulfonate (PFOS) and ZnO nanoparticles (ZnO-NPs) are frequently detected in the environment, but few studies have assessed their joint toxicity. In this study, the acute toxicity and chronic toxicity to zebrafish (Danio rerio) induced by PFOS in the presence of ZnO-NPs were investigated, including developmental toxicity and DNA damage. The embryos were exposed to PFOS (only) (0.4, 0.8, and 1.6 mg/L) and PFOS plus ZnO-NPs (0.4 + 50, 0.8 + 50, and 1.6 + 50 mg/L) solutions to evaluate mortality (96 h), body length (96 h), hatch rate (72 h), heart rate (48 h),and malformation rate (96 h). The results revealed that the co-treatment could cause more severe developmental toxicity compared with the control and single-treatments, and the toxic effects generally increased in a dose-response manner. In addition, adult zebrafish were exposed to single and mixed solutions of PFOS and ZnO-NPs (at the concentrations mentioned above) for 30 days. DNA damage to zebrafish was evaluated by the comet assay and micronucleus test. We found that the PFOS single-treatment at all doses (0.4, 0.8, and 1.6 mg/L) could strongly induce DNA damage to peripheral blood cells and that ZnO-NPs could aggravate the formation of DNA damage in co-treatments. Histological examination of liver, testicle, and ovary showed that the presence of ZnO-NPs (50 mg/L) could also cause more serious histological damage to adult zebrafish than PFOS alone. As a result, the synergistic effects played an important role during joint exposure. Our observations provide a basic understanding of the joint toxicity of PFOS and ZnO-NPs to aquatic organisms.
Collapse
Affiliation(s)
- Jia Du
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Weihai, 150090, China
| | - Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Weihai, 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Weihai, 150090, China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China
| | - Rui Jiang
- Heilongjiang Research Academy of Environmental Sciences, Harbin, 150056, China
| | - Changlu Zhuang
- Life science and Environmental Science Research Center, Harbin Institute of Commerce, Harbin, 150028, China
| | - Xiaohui Zhang
- Pathology Department, Fourth Clinical Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
12
|
Wang Y, Zhang X, Wang M, Cao Y, Wang X, Liu Y, Wang J, Wang J, Wu L, Hei TK, Luan Y, Xu A. Mutagenic Effects of Perfluorooctanesulfonic Acid in gpt Delta Transgenic System Are Mediated by Hydrogen Peroxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6294-6303. [PMID: 25875360 DOI: 10.1021/acs.est.5b00530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Perfluorooctane sulfate (PFOS), a persistent organic pollutant, has recently been closely linked with an increased risk of tumorigenesis. However, PFOS has yielded negative results in various tests of genotoxicity. The present study aimed to investigate the mutagenic response to PFOS in the gpt delta transgenic mouse mutation system and to illustrate the contribution of hydrogen peroxide (H2O2) to PFOS genotoxicity. Mutations at the redBA/gam loci were determined by Spi(-) assay both in vitro and in vivo. DNA damage was measured by phosphorylated histone H2AX (γ-H2AX) and mouse bone marrow micronucleus (MN) testing. Our data showed that PFOS induced concentration-dependent increases in γ-H2AX foci and in mutation frequencies at redBA/gam loci in transgenic mouse embryonic fibroblast cells, which were confirmed by the formation of MNs in the bone marrow and the observations of mutation induction in the livers of gpt delta transgenic mice. Concurrent treatment with catalase, an efficient H2O2 scavenger, significantly decreased the formation of γ-H2AX foci and the mutation yields induced by PFOS. In addition, the generation of H2O2 was found to be closely related to the abnormal peroxisomal β-oxidation caused by PFOS. These finding might provide new mechanistical information about genotoxic effects of PFOS.
Collapse
Affiliation(s)
- Yichen Wang
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Xuefeng Zhang
- ‡Jiangsu Tripod Preclinical Research Laboratories, Pukou Economic Development Zone, 9# Xinglong Road, Nanjing, China
| | - Meimei Wang
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Yiyi Cao
- §Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Xinan Wang
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Yun Liu
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Juan Wang
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Jing Wang
- ‡Jiangsu Tripod Preclinical Research Laboratories, Pukou Economic Development Zone, 9# Xinglong Road, Nanjing, China
| | - Lijun Wu
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| | - Tom K Hei
- ∥Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York City, New York 10027, United States
| | - Yang Luan
- §Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - An Xu
- †Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
13
|
Xie Q, Zhao F, Liu H, Shan Y, Liu F. A label-free and self-assembled electrochemical biosensor for highly sensitive detection of cyclic diguanylate monophosphate (c-di-GMP) based on RNA riboswitch. Anal Chim Acta 2015; 882:22-6. [PMID: 26043087 DOI: 10.1016/j.aca.2015.04.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/15/2015] [Accepted: 04/30/2015] [Indexed: 12/26/2022]
Abstract
Cyclic diguanylate monophosphate (c-di-GMP) is an important second messenger that regulates a variety of complex physiological processes involved in motility, virulence, biofilm formation and cell cycle progression in several bacteria. Herein we report a simple label-free and self-assembled RNA riboswitch-based biosensor for sensitive and selective detection of c-di-GMP. The detectable concentration range of c-di-GMP is from 50 nM to 1 μM with a detection limit of 50 nM.
Collapse
Affiliation(s)
- Qingyun Xie
- Single Molecule Nanometry Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China(1)
| | - Fulin Zhao
- Single Molecule Nanometry Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China(1)
| | - Hongrui Liu
- Single Molecule Nanometry Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China(1)
| | - Yanke Shan
- Single Molecule Nanometry Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China(1)
| | - Fei Liu
- Single Molecule Nanometry Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China(1).
| |
Collapse
|
14
|
An electrochemical DNA-sensor developed with the use of methylene blue as a redox indicator for the detection of DNA damage induced by endocrine-disrupting compounds. Anal Chim Acta 2015; 867:29-37. [DOI: 10.1016/j.aca.2015.02.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 12/15/2022]
|
15
|
Lu L, Wu J, Li M, You X, Kang T, Cheng S. A bis(2,2′-Bipyridine) (Dipyrido[3, 2-a:2′ 3′-c]Phenazine-N 4N 5) Ruthenium(II)-Based Electrochemiluminescence Biosensor for Evaluation of DNA Damage. ANAL LETT 2015. [DOI: 10.1080/00032719.2014.933432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Detection of DNA damage by exploiting the distance dependence of the electrochemiluminescence energy transfer between quantum dots and gold nanoparticles. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1322-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Label-free and rapid colorimetric detection of DNA damage based on self-assembly of a hemin-graphene nanocomposite. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1245-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Serpi C, Voulgaropoulos A, Girousi S. Use of Cationic Surfactants Film Carbon Paste Electrodes Modified with Multiwalled Carbon Nanotubes in Electrochemical Analysis of dsDNA. ELECTROANAL 2013. [DOI: 10.1002/elan.201300339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
LU LP, XU LH, KANG TF, CHENG SY. DNA Damage Detection by Electrochemiluminescence Sensor of CdS Quantum Dots. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1016/s1872-2040(13)60659-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|